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Precalculus Review 

Functions, Domain and Range 
𝑓:𝑋 → 𝑌 a function 𝑓 from 𝑋 to 𝑌 assigns to each  𝑥 ∈ 𝑋 a unique 𝑦 ∈ 𝑌 
the domain of 𝑓 is the set 𝑋 - the set of all real numbers for which the function is defined 
𝑌 is the image of 𝑥 under 𝑓, denoted 𝑓(𝑥) 
the range of 𝑓 is the subset of 𝑌 consisting of all images of numbers in 𝑋 
𝑥 is the independent variable, 𝑦 is the dependent variable 
𝑓is one-to-one if to each 𝑦-value in the range there corresponds exactly one 𝑥-value in the domain 
𝑓 is onto if its range consists of all of 𝑌 

Implicit v. Explicit Form 
3𝑥 + 4𝑦 =  8 implicitly defines 𝑦 in terms of 𝑥 

𝑦 = −3
4
𝑥 + 2   explicit form 

Graphs of Functions 
A function must pass the vertical line test 
A one-to-one function must also pass the horizontal line test 
Given the graph of a basic function 𝑦 = 𝑓(𝑥), the graph of the transformed function,  

𝑦 = 𝑎𝑓(𝑏𝑥 + 𝑐) + 𝑑 = 𝑎𝑓 �𝑏 �𝑥 + 𝑐
𝑏
�� + 𝑑, can be found using the following rules: 

𝑎 - vertical stretch (mult. 𝑦-values by 𝑎) 
𝑏 - horizontal stretch (divide 𝑥-values by 𝑏) 
𝑐
𝑏

 – horizontal shift (shift left if 𝑐
𝑏

> 0, right if 𝑐
𝑏

< 0) 

𝑑 - vertical shift (shift up if 𝑑 > 0, down if 𝑑 < 0) 

You should know the basic graphs of: 

 𝑦 = 𝑥,   𝑦 = 𝑥2,   𝑦 = 𝑥3,   𝑦 = |𝑥|,   𝑦 = √𝑥,   𝑦 = √𝑥3 ,   𝑦 = 1
𝑥

, 
𝑦 = sin𝑥 ,   𝑦 = cos𝑥 ,   𝑦 = tan𝑥 ,   𝑦 = csc𝑥 ,   𝑦 = sec𝑥,   𝑦 = cot𝑥 

For further discussion of graphing, see Precal and Trig Guides to Graphing 

Elementary Functions 
Algebraic functions (polynomial, radical, rational) - functions that can be expressed as a finite number of 
sums, differences, multiples, quotients, & radicals involving 𝑥𝑛 
Functions that are not algebraic are trancendental (eg. trigonometric, exponential, and logarithmic 
functions) 
 

 



Polynomial Functions 
𝑓(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1+. . . +𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 
𝑎𝑛 = leading coefficient 
𝑎𝑛𝑥𝑛 = lead term 
𝑛 = degree of polynomial  (largest exponent) 
𝑎0 = constant term  (term with no 𝑥) 

Lead term test for end behavior: even functions behave like 𝑦 = 𝑥2, odd functions behave like 𝑦 = 𝑥3 

Odd and Even Functions 
𝑦 = 𝑓(𝑥) is even if 𝑓(−𝑥) = 𝑓(𝑥) 
𝑦 = 𝑓(𝑥) is odd if 𝑓(−𝑥) = −𝑓(𝑥) 

Rational Functions 

𝑓(𝑥) =
𝑝(𝑥)
𝑞(𝑥)

  , 𝑝, 𝑞 − 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑠, 𝑞(𝑥) ≠ 0 

Zeros of a function 
Solutions to the equation 𝑓(𝑥) = 0;  
When written in the form (𝑥, 0) are called the x-intercepts of the function 

Y-intercepts 
Found by evaluating 𝑓(0)  (plugging 0 in for x) 

Vertical Asymptotes 
Found by setting the denominator equal to 0 and solving for x. 
Note that any factors found in both numerator and denominator will result in holes rather than vertical 
asymptotes. 
The graph will approach but never cross a vertical asymptote. 

Horizontal/Oblique Asymptotes 
If degree of the numerator is smaller than the degree of denominator, there will be a horizontal 
asymptote at 𝑦 = 0. 
If the degree of the numerator is the same as the degree of the denominator, there will be a horizontal 
asymptote at 𝑦 = 𝑐, where 𝑐 is the constant ratio of the leading coefficients. 
If the degree of the numerator is one higher than the degree of the denominator, there will be an 
oblique asymptote (one degree higher - linear, 2 degrees higher, quadratic, etc), found by long division. 

  



Limits 

Informal Definition of a Limit 
If 𝑓(𝑥) becomes arbitrarily close to a single number 𝐿 as 𝑥 approaches 𝑐 from either side, the limit of 
𝑓(𝑥), as 𝑥 approaches 𝑐, is 𝐿. 

Note: the existence or nonexistence of 𝑓(𝑥) at 𝑥 = 𝑐 has no bearing on the existence of the limit of 
𝑓(𝑥) as 𝑥 approaches 𝑐. 

Formal Definition of a Limit 
Let 𝑓 be a function defined on an open interval containing 𝑐 (except possibly at 𝑐) and let 𝐿 be a real 
number.  The statement lim𝑥→𝑐 𝑓(𝑥) = 𝐿 means that for each 𝜀 > 0, there exists a 𝛿 > 0 such that if 
0 < |𝑥 − 𝑐| < 𝛿, then |𝑓(𝑥) − 𝐿| < 𝜀. 

Translation: If given any arbitrarily small positive number 𝜀, there exists another small positive number 𝛿 
such that 𝑓(𝑥) is  𝜀-close to 𝐿 whenever 𝑥 is 𝛿-close to 𝑐, then the limit of 𝑓 as 𝑥 approaches 𝑐 exists 
and is equal to 𝐿. 

Note: if the limit of a function exists, then it is unique. 

Example proof of a limit using the 𝜺 − 𝜹 definition 
Problem: Prove that lim𝑥→−3 2𝑥 + 5 = −1 
Proof: We want to show that for each 𝜀 > 0 there exists a 𝛿 > 0 such that |(2𝑥 + 5) − (−1)| < 𝜀 
whenever |𝑥 − (−3)| < 𝛿.  Since we can rewrite |2𝑥 + 5 + 1| = |2𝑥 + 6| = 2|𝑥 + 3|, if we take 𝛿 = 𝜀

2
 , 

then whenever |𝑥 − (−3)| < 𝛿, we have |(2𝑥 + 5) − (−1)| = 2|𝑥 + 3| < 2 ∙ 𝜀
2

= 𝜀.  Since we have 

found a 𝛿 that works for any 𝜀, we have proved that the limit of the function is −1. 

Evaluating Limits Analytically 
Basic Limits 
𝐿𝑒𝑡  𝑏, 𝑐 ∈ ℝ,     𝑛 > 0 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟,    𝑓,𝑔 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠,   lim𝑥→𝑐 𝑓(𝑥) = 𝐿,   lim𝑥→𝑐 𝑔(𝑥) = 𝐾   
1. Constant   lim𝑥→𝑐 𝑏 = 𝑏 
2. Identity   lim𝑥→𝑐 𝑥 = 𝑐 
3. Polynomial   lim𝑥→𝑐 𝑥𝑛 = 𝑐𝑛 
4. Scalar Multiple lim𝑥→𝑐[𝑏𝑓(𝑥)] = 𝑏𝐿 
5. Sum or Difference lim𝑥→𝑐[𝑓(𝑥) ± 𝑔(𝑥)] = 𝐿 ± 𝐾 
6. Product  lim𝑥→𝑐[𝑓(𝑥)𝑔(𝑥)] = 𝐿𝐾 

7. Quotient   lim𝑥→𝑐 �
𝑓(𝑥)
𝑔(𝑥)

� = 𝐿
𝐾

   ,   𝐾 ≠ 0 

8. Power  lim𝑥→𝑐[𝑓(𝑥)]𝑛 = 𝐿𝑛 

Note: If substitution yields 0
0
 , an indeterminate form, the expression must be rewritten in order to 

evaluate the limit. 

 



Examples: 

1. lim𝑥→−1
2𝑥2−𝑥−3
𝑥+1

= lim𝑥→−1
(𝑥+1)(2𝑥−3)

𝑥+1
= lim𝑥→−1(2𝑥 − 3) = −5  

2. lim𝑥→0
√2+𝑥−√2

𝑥
= lim𝑥→0

√2+𝑥−√2
𝑥

∙ √2+𝑥+√2
√2+𝑥+√2

= lim𝑥→0
2+𝑥−2

𝑥�√2+𝑥+√2�
= lim𝑥→0

1
√2+𝑥+√2

= 1
2√2

 

3. limℎ→0
(𝑥+ℎ)2−𝑥2

ℎ
= limℎ→0

𝑥2+2𝑥ℎ+ℎ2−𝑥2

ℎ
= limℎ→0

2𝑥ℎ+ℎ2

ℎ
= limℎ→0

ℎ(2𝑥+ℎ)
ℎ

= lim
ℎ→0

(2𝑥 + ℎ) = 2𝑥  

Squeeze Theorem 
If 𝑔(𝑥) ≤ 𝑓(𝑥) ≤ ℎ(𝑥), that is, a function is bounded above and below by two other functions, and 
lim𝑥→𝑐 𝑔(𝑥) = lim𝑥→𝑐 ℎ(𝑥) = 𝐿, that is, the two upper and lower functions have the same limit, then 
lim𝑥→𝑐 𝑓(𝑥) = 𝐿, that is, the limit of the function that is “squeezed” between the two functions with 
equal limits must have the same limit. 

Example: Prove that lim𝑥→0 𝑥2 sin𝑥 = 0 using the Squeeze Theorem. 
Solution: −1 ≤ sin𝑥 ≤ 1.  Multiplying both sides of each inequality by 𝑥2 yields −𝑥2 ≤ 𝑥2 sin𝑥 ≤ 𝑥2.  
Now, applying limits, we have lim𝑥→0 −𝑥2 ≥ lim𝑥→0 𝑥2 sin𝑥 ≥ lim𝑥→0 𝑥2  ↔   0 ≥ lim𝑥→0 𝑥2 sin𝑥 ≥ 0  
Since our limit is bounded above and below by 0, by the Squeeze theorem, we have that 
lim𝑥→0 𝑥2 sin𝑥 = 0. 

Two important limits that can be proven using the Squeeze Theorem that we will use to find many other 
limits are: 

lim
𝑥→0

sin𝑥
𝑥

= 1      𝑎𝑛𝑑     lim
𝑥→0

1 − cos𝑥
𝑥

= 0  

Examples: 

1. lim𝑥→0
sin2𝑥
sin3𝑥

= lim𝑥→0
sin2𝑥
2𝑥

∙ 3𝑥
sin3𝑥

∙ 2
3

= 1 ∙ 1 ∙ 2
3

= 2
3

 

2. limℎ→0
sin(𝑥+ℎ)−sin𝑥

ℎ
= limℎ→0

sin𝑥 cosℎ+cos𝑥 sinℎ−sin𝑥
ℎ

= limℎ→0
sin𝑥(cosℎ−1)+cos𝑥 sinℎ

ℎ
= 

    �limℎ→0(− sin𝑥) ∙ 1−cosℎ
ℎ

� + �lim
ℎ→0

(cos𝑥) ∙ sinℎ
ℎ
� = (− sin𝑥) ∙ 0 + cos𝑥 ∙ 1 = cos𝑥   

 

 
Continuity 

If lim𝑥→𝑐 𝑓(𝑥) = 𝑓(𝑐), we say that the function 𝑓 is continuous at 𝑐. 

Discontinuities occur when either  
1.  𝑓(𝑥) is undefined,  
2. lim𝑥→𝑐 𝑓(𝑥) does not exist, or  
3. lim𝑥→𝑐 𝑓(𝑥) ≠ 𝑓(𝑐) 

If a discontinuity can be removed by inserting a single point, it is called removable.  Otherwise, it is 
nonremovable (e.g. verticals asymptotes and jump discontinuities) 



One-Sided Limits 
lim
𝑥→𝑐+

𝑓(𝑥) = 𝐿     𝑙𝑖𝑚𝑖𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 

lim
𝑥→𝑐−

𝑓(𝑥) = 𝐿     𝑙𝑖𝑚𝑖𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 

Examples: 

1. lim𝑥→2+
|𝑥−2|
𝑥−2

= 1     Note that |𝑥−2|
𝑥−2

= � 1,   𝑥 ≥ 2
−1, 𝑥 < 2

� 

2. lim𝑥→1+ 𝑓(𝑥) ,𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥) = �𝑥,        𝑥 ≤ 1
1 − 𝑥, 𝑥 > 1

�   Since we want the limit from the right, we look at the  

    piece where the function is defined > 1.  Plugging 1 into 1 − 𝑥 gives us that the limit is 0 . 

Continuity at a point 
A function 𝑓 is continuous at 𝑐 if the following 3 conditions are met: 
1. 𝑓(𝑐) is defined 
2. Limit of 𝑓(𝑥) exists when 𝑥 approaches 𝑐 
3. Limit of 𝑓(𝑥) when 𝑥 approaches 𝑐 is equal to 𝑓(𝑐) 

Continuity on an open interval 
A function is continuous on an open interval if it is continuous at each point in the interval. A function 
that is continuous on the entire real line (−∞,∞)is everywhere continuous. 

Continuity on a closed interval 
A function f is continuous on the closed interval [𝑎, 𝑏] if it is continuous on the open interval l (𝑎, 𝑏) and  
lim𝑥→𝑎+ 𝑓(𝑥) = 𝑓(𝑎) and lim𝑥→𝑏− 𝑓(𝑥) = 𝑓(𝑏). 

Examples: 

1. Discuss the continuity of the function 𝑓(𝑥) = 1
𝑥2−4

 on the closed interval [−1,2].  We know that this 

function has vertical asymptotes at 𝑥 = −2 and 𝑥 = 2, has a horizontal asymptote at 𝑥 = 0, and has no 
zeros.  The only discontinuities are at 2 and −2, and both are non-removable.  So while we can’t say that 
the function is continuous on [−1,2] (because we would need the limit from the left to exist at 𝑥 = 2), 
we can say that the function is continuous on [−1,2). 

2. Discuss the continuity of the function 𝑓(𝑥) = 𝑥−1
𝑥2+𝑥−2

.  Factoring yields (𝑥) = 𝑥−1
(𝑥−1)(𝑥+2)

 .  Since the 

𝑥 − 1 factors cancel, this tells us that there is a hole in the graph at 𝑥 = 1, and that the function 

behaves like 𝑓(𝑥) = 1
𝑥+2

 everywhere except at 𝑥 = 1.  This latter function has a vertical asymptote at 

𝑥 = −2.  Thus, our original function has a removable discontinuity at 𝑥 = 1 and a non-removable 
discontinuity at 𝑥 = −2. 

Continuity of a Composite Function 
If 𝑔 is continuous at 𝑐 and 𝑓 is continuous at 𝑔(𝑐), then (𝑓 ∘ 𝑔)(𝑥) = 𝑓�𝑔(𝑥)� is continuous at 𝑐. 

Intermediate Value Theorem 
If 𝑓 is continuous on the closed interval [𝑎, 𝑏] and 𝑘 is any number between 𝑓(𝑎) and 𝑓(𝑏), then there 
is at least one number 𝑐 in [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑘. 



Infinite Limits 

                means the function increases or decreases without bound; i.e. the graph of the 

function approaches a vertical asymptote 

Finding Vertical Asymptotes 

x-values at which a function is undefined result in either holes in the graph or vertical asymptotes.  Holes 

result when a function can be rewritten so that the factor which yields the discontinuity cancels.  Factors 

that can’t cancel yield vertical asymptotes. 

Example: 

     
 

      
   has vertical asymptotes at     and     

     
          

      
  has a vertical asymptote at     and a hole at      

Rules involving infinite limits 

Let                   and                  

1.       [         ]    

2.       [        ]  {
         
       

 

3.       
    

    
   

The Derivative 

The slope of the tangent line to the graph of   at the point        is given by 

     
    

  

  
    

    

            

  
 

The derivative of f at x is given by 

         
    

            

  
 

An alternate form of the derivative that we often use to show that certain continuous functions are not 

differentiable at all points (either having sharp points or vertical tangent lines) is given by 

         
   

         

   
 

Basic Differentiation Rules 

1. The derivative of a constant function is zero, i.e., for          
 

  
[ ]    

2. Power Rule  for        
 

  
[  ]        

    Special case: 
 

  
[ ]    

3. Constant Multiple Rule          
 

  
[     ]         

4. Sum & Difference Rules   
 

  
[         ]              



Derivatives of Trig Functions 

1. 𝑑
𝑑𝑥

[sin𝑥] = cos𝑥 

2. 𝑑
𝑑𝑥

[cos𝑥] = − sin𝑥 

3. 𝑑
𝑑𝑥

[tan 𝑥] = sec2 𝑥 

4. 𝑑
𝑑𝑥

[cot 𝑥] = −csc2 𝑥 

5. 𝑑
𝑑𝑥

[sec𝑥] = sec𝑥 tan𝑥 

6. 𝑑
𝑑𝑥

[csc𝑥] = − csc𝑥 cot 𝑥 

Rates of Change 

The average rate of change of a function 𝑓 with respect to a variable 𝑡 is given by ∆𝑓
∆𝑡

= 𝑓(𝑡2)−𝑓(𝑡1)
𝑡2−𝑡1

 

The instantaneous rate of change of a function 𝑓 at an instance of the variable 𝑡 is given by 𝑓’(𝑡) 

The rate of change of position is velocity. 
The rate of change of velocity is acceleration. 

The position of a free-falling object under the influence of gravity is given by 𝑠(𝑡) = 1
2
𝑔𝑡2 + 𝑣0𝑡 + 𝑠𝑜, 

where 𝑠𝑜 = initial height of the object, 𝑣0 = initial velocity of the object, 𝑔 = −32 𝑓𝑡
𝑠2
𝑜𝑟 − 9.8 𝑚/𝑠2 

Product Rule 
𝑑
𝑑𝑥

[𝑓(𝑥)𝑔(𝑥)] = 𝑓(𝑥)𝑔′(𝑥) + 𝑓′(𝑥)𝑔(𝑥) 

Quotient Rule 
𝑑
𝑑𝑥 �

𝑓(𝑥)
𝑔(𝑥)�

=
𝑔(𝑥)𝑓′(𝑥)− 𝑓(𝑥)𝑔′(𝑥)

𝑔2(𝑥)
 

“low dee high less high dee low, draw the line and square below” 

Chain Rule 
𝑑
𝑑𝑥

[𝑓(𝑔(𝑥))] = 𝑓′�𝑔(𝑥)�𝑔′(𝑥) 

When one or more functions are composed, you take the derivative of the outermost function first, 
keeping its inner function, and then multiply that entire thing by the derivative of the inner function.  If 
more than two functions are composed, you just repeat this process for all inner functions, e.g. 
𝑑
𝑑𝑥

[𝑓(𝑔(ℎ(𝑥)))] = 𝑓′ �𝑔�ℎ(𝑥)��𝑔′�ℎ(𝑥)�ℎ′(𝑥) 

𝑑
𝑑𝑥

[𝑓(𝑔(ℎ(𝑘(𝑥))))] = 𝑓′ �𝑔 �ℎ�𝑘(𝑥)���𝑔′ �ℎ�𝑘(𝑥)�� ℎ′�𝑘(𝑥)�𝑘′(𝑥) 

 

 

 



Example: 

𝑓(𝑥) = sin ��3 sec2(5𝑥4 − 7𝑥) + cos𝑥� 
First we want to rewrite any roots as fractional powers, and any 𝑓𝑛(𝑥) as [𝑓(𝑥)]𝑛 . 
𝑓(𝑥) = sin�(3 [sec(5𝑥4 − 7𝑥)]2 + cos𝑥)1 2⁄ � 
Let's identify our sequence of nested functions to determine what order we will take derivatives. 
sin𝑎    ,    𝑎 = 𝑏1 2⁄     ,    𝑏 = 3𝑐2 + cos𝑥     ,     𝑐 = sec𝑑     ,    𝑑 = 5𝑥4 − 7𝑥     
The derivatives of these functions are, respectively, 

(cos𝑎)𝑎′  ,   𝑎′ = � 
1
2
𝑏−1 2⁄ � 𝑏′   ,    𝑏′ = (6𝑐)𝑐′ − sin𝑥     ,    𝑐′ = (sec𝑑 tan𝑑)𝑑′   ,    𝑑′ = 20𝑥3 − 7 

So, using the chain rule, the derivative of our original function is 

𝑓′(𝑥) = �cos ��3 sec2(5𝑥4 − 7𝑥) + cos𝑥�� ∙ � 
1
2

(3 [sec(5𝑥4 − 7𝑥)]2 + cos𝑥)−1 2⁄ � ∙

∙ ([6sec(5𝑥4 − 7𝑥)] ∙ (sec(5𝑥4 − 7𝑥) tan(5𝑥4 − 7𝑥)) ∙ (20𝑥3 − 7) − sin𝑥) 

Implicit Differentiation 
When taking the derivative of a function with respect to 𝑥, the only variable whose derivative is 1 is 𝑥, 
since all other variables are treated as functions of 𝑥 (except variables standing for constants, like 𝜋).  
So, when we have an equation in 𝑥 and 𝑦 written implicitly (i.e. not solved for y in terms of x) and we 
want to find 𝑦′, we take the derivative of both sides, but every derivative involving 𝑦 must treat y as a 
function of 𝑥, meaning it has to be multiplied by the derivative of the "inside" function, 𝑦′. 

Example: 
𝑥2 + 𝑦3 = 3𝑥𝑦 
Taking the derivative of both sides with respect to x, we have 
2𝑥 + 3𝑦2𝑦′ = 3𝑥𝑦′ + 3𝑦  (we used the power rule twice on the LHS, and the product rule on the RHS) 
Then we put all our 𝑦′-terms on one side, factor out the 𝑦′, and divide. 
3𝑦2𝑦′ − 3𝑥𝑦′ = 3𝑦 − 2𝑥 
𝑦′(3𝑦2 − 3𝑥) = 3𝑦 − 2𝑥 

𝑦′ =
3𝑦 − 2𝑥

3𝑦2 − 3𝑥
 

If we want to find 𝑦′′ in terms of 𝑥 and 𝑦, we just take the derivative of 𝑦′, again remembering to treat 𝑦 
as a function of 𝑥.  We'll end up with an expression in 𝑥,𝑦, and 𝑦′, so we substitute the expression we 
found for 𝑦′ in terms of just 𝑥 and 𝑦.  Using the above implicit differentiation for 𝑦′, we have 

𝑦′′ =
(3𝑦2 − 3𝑥)(3𝑦′ − 2) − (3𝑦 − 2𝑥)(6𝑦𝑦′ − 3)

(3𝑦2 − 3𝑥)2

=
(3𝑦2 − 3𝑥) �3 � 3𝑦 − 2𝑥

3𝑦2 − 3𝑥� − 2� (3𝑦 − 2𝑥) �6𝑦 � 3𝑦 − 2𝑥
3𝑦2 − 3𝑥� − 3�

(3𝑦2 − 3𝑥)2  

 

 



Related Rates 
Related rate problems are basically just applied implicit differentiation problems, typically dealing with 2 
or more variables that are each functions of an additional variable.  For example, a problem dealing with 
the volume of a cone, where volume, radius, and height are all functions of time.  We take the derivative 
of both sides of our equation implicitly, remembering that each variable is a function of time. 

Basic equations/formulas to know: 

Volume of a Sphere  𝑉 = 4
3
𝜋𝑟3 

Surface Area of a Sphere 𝐴 = 4𝜋𝑟2 

Volume of a cone  𝑉 = 1
3
𝜋𝑟2ℎ 

Volume of a right prism  𝑉 = (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑏𝑎𝑠𝑒) ∙ (𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 ℎ𝑒𝑖𝑔ℎ𝑡) 

Example problem: A conical tank is 10 feet across at the top and 10 feet deep.  If it is being filled with 
water at a rate of 5 cubic feet per minute, find the rate of change of the depth of the water when it is 3 
feet deep.   

Steps to solve: 
1. Identify knowns/unknowns 

 𝑟 = 5 𝑤ℎ𝑒𝑛 ℎ = 10  →   𝑟
ℎ

= 5
10

= 1
2

  →   𝑟 = ℎ
2
 

 𝑑𝑣
𝑑𝑡

= 5 𝑓𝑡3/𝑚𝑖𝑛 

 𝑑ℎ
𝑑𝑡

= ?   𝑤ℎ𝑒𝑛 ℎ = 3𝑓𝑡 
2. Identify equation 

 𝑉 = 1
3
𝜋𝑟2ℎ 

 Note that this equation involves variables V, r, and h, all of which are functions of t.  When we  

 take the derivative, we will end up with 𝑑𝑣
𝑑𝑡

, 𝑑ℎ
𝑑𝑡

,𝑎𝑛𝑑 𝑑𝑟
𝑑𝑡

 .  We know the value of 𝑑𝑣
𝑑𝑡

 , and we're  

 trying to solve for 𝑑ℎ
𝑑𝑡

 , but we don't know anything about 𝑑𝑟
𝑑𝑡

 , so we want to rewrite the equation  

 so that it doesn't include r at all.  To do this, we use the ratio of radius to height of the tank. 
 In other problems, this step may include rearranging the Pythagorean theorem, or using trig  
 functions - whatever information you know about the given shape/area/volume. 
3. Rewrite equation 

 𝑉 = 1
3
𝜋𝑟2ℎ = 1

3
𝜋 �ℎ

2
�
2
ℎ = 1

3
�1
4
� 𝜋ℎ3 

4. Take the derivative of both sides with respect to t (or whatever the independent variable is). 

 𝑑𝑉
𝑑𝑡

= 1
4
𝜋ℎ2 ∙ 𝑑ℎ

𝑑𝑡
 

5. Rearrange to solve for the unknown. 

 𝑑ℎ
𝑑𝑡

=
4𝑑𝑉𝑑𝑡
𝜋ℎ2

 

6. Plug in known values.  Note that we are not plugging in any known values until the VERY end of the 
problem.  Otherwise, our derivative would have been inaccurate. 

 𝑑ℎ
𝑑𝑡

= 4(5)
𝜋32

= 20
9𝜋

 𝑓𝑡/𝑚𝑖𝑛 



Relative Extrema, Increasing & Decreasing, and the First Derivative Test 
Recall that the derivative of a function at a point is the slope of the tangent line at that point.  When the 
derivative is zero, the slope is zero, when the derivative is positive, the slope is positive, and when the 
derivative is negative, the slope is negative. 
 

𝑓′(𝑥) 𝑓(𝑥) 
𝑓′(𝑥) = 0 f is either constant or has a relative maximum or minumum 
𝑓′(𝑥) > 0 f is increasing 
𝑓′(𝑥) < 0 f is decreasing 
 
Absolute Extrema on a Closed Interval 
To find absolute maxima and minima on a closed interval (the highest and lowest y-values a function 
achieves on the interval), first take the derivative of the function, set it equal to zero, and solve for x.  
These values are called critical values or critical numbers.  Then plug any of these x-values which lie 
within the given closed interval, and the x-values of the endpoints of the interval into the original 
function in order to find the y-values of these points.  The largest y-value is your absolute maximum and 
the smallest y-value is your absolute minimum. 

Open Intervals on which a Function is Increasing or Decreasing 
If we want to discuss the behavior of a function on its entire domain, we take all of the critical numbers 
we found by setting the derivative equal to zero, along with any other x-values for which the derivative 
is undefined, and use these numbers to split the number line into intervals.  For example, say we have a 
function with the following derivative: 

𝑓′(𝑥) =
(𝑥 − 2)(𝑥 + 5)(𝑥 − 8)

(𝑥 + 1)2
 

The critical numbers are −5,−1, 2, and 8.  So, we split up the real number line into the following 
intervals, and then choose a number within each interval to plug into the derivative to see if it is positive 
or negative in that interval (if it is positive/negative for one value in that interval, it will be for all values).  
Note that the denominator is always positive, so we can concentrate on the numerator to determine if f' 
is positive/negative for each value. 

(−∞,−5) (−5,−1) (−1,2) (2,8) (8,∞) 
𝑓′(−6) < 0 𝑓′(−2) > 0 𝑓′(0) > 0 𝑓′(3) < 0 𝑓′(9) > 0 

 
Thus, the function f is increasing on  (−5,−1) ∪ (−1,2) ∪ (8,∞) and decreasing on (−∞,−5) ∪ (2,8). 

 

 

 

 



Concavity and the Second Derivative 
The second derivative is the rate of change of the slope of a function.  When slope increases, a function 
is concave up.  When slope decreases, the function is concave down.  When a function changes 
concavity, we get what are called inflection points.  To determine possible inflection points, take the 
second derivative of the function, set it equal to zero and solve for x.  Those values are the x-coordinates 
of your inflection points.  Then, divide up the real number line into intervals based on those numbers, 
and plug a number from each interval into the second derivative.  If positive, the function is concave up 
on that interval.  If negative, the function is concave down on the interval. 

𝑓′′(𝑥) 𝑓(𝑥) 
𝑓′′(𝑥) = 0 f has inflection point 
𝑓′′(𝑥) > 0 f is concave up 
𝑓′′(𝑥) < 0 f is concave down 
 
The second derivative can also be used to determine whether a particular relative extremum, found 
using the first derivative, is in fact a maximum or a minimum, without having to determine whether the 
function is increasing or decreasing on either side of the extremum.  If the function is concave down at 
an extremum, it is a maximum; if the function is concave up at an extremum, it is a minimum. 

Optimization Problems 
When trying to maximize or minimize a function, you're basically using the first derivative test to find 
relative extrema.  When you set the first derivative equal to zero and solve for x, if there is more than 
one solution, it will usually be obvious that only one of them makes sense as the answer.  For example, a 
negative value for area, radius, etc. certainly doesn't make sense, so you choose the positive value. 

These problems will typically involve formulas with multiple variables, and so require multiple equations 
to solve.  Before taking any derivatives, figure out every equation you can that relate the variables, then 
rewrite the formula you are trying to maximize or minimize by substituting for one or more of the 
variables so that you end up with a function of a single variable. 

 

 

 

 

 

 

 

 



Rolle’s Theorem: Let 𝑓 be continuous on the closed interval [𝑎, 𝑏] and differentiable on the open 
interval (𝑎, 𝑏).  If 𝑓(𝑎) = 𝑓(𝑏), then there is at least one number 𝑐 in (𝑎, 𝑏) such that 𝑓’(𝑐) = 0. 

Basically, Rolle’s Theorem states that if a continuous, differentiable function achieves the same y-value 
at both endpoints of a given interval, then there must be some value in that interval there the function 
has a horizontal tangent line. 

Mean Value Theorem: If 𝑓 is continuous on the closed interval [𝑎, 𝑏] and differentiable on the open 

interval (𝑎, 𝑏), then there exists a number 𝑐 in (𝑎, 𝑏) such that 𝑓’(𝑐) = 𝑓(𝑏)−𝑓(𝑎)
𝑏−𝑎

. 

The Mean Value Theorem is really a generalized version of Rolle’s Theorem.  It states that if a function is 
continuous and differentiable on a given interval, then there must be some value in that interval where 
the slope of the tangent line to the graph of the function is the same as the slope of the secant line 
through the enpoints of the interval. 

Limits at Infinity 
The line 𝑦 = 𝐿 is a horizontal asymptote of the graph of 𝑓 if lim𝑥→−∞ 𝑓(𝑥) = 𝐿 or lim𝑥→∞ 𝑓(𝑥) = 𝐿. 
If r is a positive rational number and c is any real number, then lim𝑥→∞

𝑐
𝑥𝑟

= 0.  If 𝑥𝑟 is defined when 

𝑥 < 0, then lim𝑥→−∞
𝑐
𝑥𝑟

= 0. 

Guidelines for finding limits at infinity of rational functions: 
If the degree of the numerator is less than the degree of the denominator, then the limit is 0. 
If the degree of the numerator is equal to the degree of the denominator, then the limit is the ratio of 
leading coefficients. 
If the degree of the numerator is larger than the degree of the denominator, then the limit is ±∞. 
(the above 3 rules follow the rules for horizontal/oblique asymptotes we learned in Precal) 

If the numerator or denominator has a radical, remember that the nth root of x to the n is defined as: 

√𝑥𝑛𝑛 = �
𝑥,   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

|𝑥|, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
� 

and that absolute value of x is defined as: 

|𝑥| = �
𝑥,   𝑖𝑓 𝑥 ≥ 0
−𝑥,   𝑖𝑓 𝑥 < 0

� 

Indeterminate Forms and l’Hopital’s Rule 
0 0⁄ , ∞ ∞⁄ , 0 ∙ ∞, 1∞, 00, and ∞−∞ are called indeterminate forms. 

l’Hopital’s Rule: Let 𝑓 and 𝑔 be functions that are differentiable on an open interval (𝑎, 𝑏) containing 𝑐, 
except possibly at 𝑐 itself.  Assume that 𝑔’(𝑥) ≠ 0 for all x in (a,b), except possibly at c itself.  If the limit 
of f(x)/g(x) as x approaches c produces an indeterminate form 0/0, ∞ ∞⁄ , (−∞) ∞⁄ , or ∞ (−∞)⁄ , then 

lim𝑥→𝑐
𝑓(𝑥)
𝑔(𝑥)

= lim𝑥→𝑐
𝑓′(𝑥)
𝑔′(𝑥)

 

 



DERIVATIVE RULES 

Power Rule: 
𝑑
𝑑𝑥

[𝑥𝑛] = 𝑛𝑥𝑛−1 

Constant Multiple Rule: 
𝑑
𝑑𝑥

[𝑐𝑓(𝑥)] = 𝑐
𝑑
𝑑𝑥

[𝑓(𝑥)] 

Sum & Difference: 
𝑑
𝑑𝑥

[𝑓(𝑥) ± 𝑔(𝑥)] = 𝑓′(𝑥) ± 𝑔′(𝑥) 

Product Rule: 
𝑑
𝑑𝑥

[𝑓(𝑥)𝑔(𝑥)] = 𝑓′(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔′(𝑥) 

Quotient Rule: 
𝑑
𝑑𝑥 �

𝑓(𝑥)
𝑔(𝑥)�

=
𝑓′(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑔′(𝑥)

𝑔2(𝑥)
 

Chain Rule: 
𝑑
𝑑𝑥

[𝑓(𝑔(𝑥))] = 𝑓′�𝑔(𝑥)�𝑔′(𝑥) 

 
Trig Functions:

𝑑
𝑑𝑥

[sin𝑥] = cos𝑥 

𝑑
𝑑𝑥

[cos𝑥] = − sin𝑥 

𝑑
𝑑𝑥

[tan𝑥] = sec2 𝑥 

𝑑
𝑑𝑥

[cot𝑥] = − csc2 𝑥 

𝑑
𝑑𝑥

[sec𝑥] = sec𝑥 tan𝑥 

𝑑
𝑑𝑥

[csc𝑥] = − csc𝑥 cot𝑥

 

Exponential and Logarithmic Functions:

𝑑
𝑑𝑥

[𝑎𝑢] = 𝑎𝑢𝑢′ ln 𝑎 
𝑑
𝑑𝑥

[log𝑎 𝑢] =
𝑢′

𝑢 ln 𝑎
 

Inverse Functions: 
𝑑
𝑑𝑥

[𝑓−1(𝑥)] =
1

𝑓′(𝑓−1(𝑥))
 

 
Inverse Trig Functions:

𝑑
𝑑𝑥

[arcsin𝑢] =
𝑢′

√1 − 𝑢2
 

𝑑
𝑑𝑥

[arctan𝑢] =
𝑢′

1 + 𝑢2
 

𝑑
𝑑𝑥

[arcsec𝑢] =
𝑢′

|𝑢|√𝑢2 − 1
 

 
 
 

𝑑
𝑑𝑥

[arccos𝑢] =
−𝑢′

√1 − 𝑢2
 

𝑑
𝑑𝑥

[arccot𝑢] =
−𝑢′

1 + 𝑢2
 

𝑑
𝑑𝑥

[arccsc𝑢] =
−𝑢′

|𝑢|√𝑢2 − 1




