

Given $a_1||a_2|$ and $b_1||b_2|$, what else do we know?

diagonals IK & JL bisect each other
(AI H & HIL are supprenutary - linear pair)

LILK & LJKL are supplementary - interior L'S OD Some side of l

 $28+29+23=180^{\circ}$ 21=23 etc 22>28 and 22>29 22=28+29=24 25=28+29=24 25=23+29=27 25=23+29=27

9.1 - Area

When we find the area of a polygon, we are actually finding the area of the polygonal region bounded by that polygon.

Postulate 8 - The Area Postulate

Every polygonal region has a positive number called its area such that

(1) congruent triangles have equal areas

 $\alpha \triangle ABC = \alpha \triangle CDA$

(2) the area of a polygonal region is equal to the sum of the areas of its nonoverlapping parts $\alpha ABCD = \alpha \triangle ABC + \alpha \triangle CDA$

9.2 - Squares and Rectangles

Postulate 9 - The area of a rectangle is the product of its base and altitude

Corollary to Postulate 9 - The area of a square is the square of its side

SCIENTIFIC AMERICAN

To divide a square into smaller squares each having a different area was once thought to be impossible. The figure seems to show a solution.

Given that the areas of squares C and D are 64 and 81 square units respectively, find the areas of the other squares.

I has onea
$$|^2 = |$$
H has onea $|^2 = |$
E has onea $|^2 = 49$
E has onea $|0^2 = 100|$
B has onea $|5^2 = 225|$
G-has onea $|4^2 = |6|$
F has onea $|4^2 = |9|$
A has onea $|8^2 = 324|$

$$18^2 = (10 + 8)^2$$

$$= (10+8)(10+8)$$

$$= 10^{2}+2(8)(10)+8$$

$$= 100+160+67$$

$$= 324$$

$$(a+b)^{2} = (a+b)(a+b)^{2}$$

= $a^{2} + 2ab + b^{2}$

HW #7 (due Fri. 01/16)

- Ch 8 Review (pp. 325-329)
- Midterm Review (pp. 330-336)

Test #3 - Friday 01/16

Note: I have Office Hours today (Wednesday, 01/14) at 3:45!