Postulate 8 - The Area Postulate

Every polygonal region has a positive number called its area such that

(1) congruent triangles have equal areas

 $\alpha \triangle ABC = \alpha \triangle CDA$

(2) the area of a polygonal region is equal to the sum of the areas of its nonoverlapping $\alpha ABCD = \alpha \triangle ABC + \alpha \triangle CDA$

parts

9.2 - Squares and Rectangles

Postulate 9 - The area of a rectangle is the product of its base and altitude

Corollary to Postulate 9 - The area of a square is the square of its side

9.3 - Triangles

Theorem 38 - The area of a right triangle is half the product of its legs.

Given: Right $\triangle ABC$ with legs a and b

Prove:
$$\alpha \triangle ABC = \frac{1}{2}ba$$

Theorem 39 - The area of a triangle is half the product of any base and corresponding altitude.

Given: $\triangle ABC$ with base b and altitude h

Statements

1. ABC has based of Given

2. ABDA JABDC are right \(\Delta \) s have right angles

3. \(\text{ABDA} = \frac{1}{2} \text{Ah} \)

\(\text{ABDA} = \frac{1}{2} \text{Ah} \)

\(\text{ABDC} = \frac{1}{2} \text{Bh} \)

4. XDABC = XDBDA+BBDC Area Postulate

 $5.\alpha \triangle ABC = \frac{1}{2}xh + \frac{1}{2}yh$ substitution (#3&4)

6. ∝∆ABC = ½h (x+y) Distributive

7. x+y=b (AD+DC=AC)

8. as ABC = Inb

Betweenness of Points Theorem

Substitution (#627)

Corollary to Theorem 39 - Triangles with equal bases and equal altitudes have equal areas.

Heron's Theorem

The area of a triangle with sides a, b, and c is $\sqrt{s(s-a)(s-b)(s-c)}$ where s is half of the triangle's perimeter.

$$5 = \frac{1}{2}(a+b+c)$$

Suppose there are three triangles with the following sides:

Triangle 1: 5, 5, and 6. $5 = \frac{1}{2} (5 + 5 + 6) = \frac{1}{2} (8 + 5) (8 - 6) (8 -$

Triangle 2: 5, 5, and 8.5 = $\frac{1}{2}$ (5 + 5 + 8) = 9 $4 = \sqrt{\frac{9}{9}(9-5)(9-5)(9-8)} = 12$

Triangle 3: 5, 5, and $10.8 \times \frac{1}{2} (5+5+6) = 10$ $A = \sqrt{\frac{10}{10} (10-5)(10-6)(10-10)} = 0$ Sum of 2 sides must be greater than 3 5 000 1. Which triangle do you think has the greatest area?

- 2. Use Heron's Theorem to find the area of each triangle.
- 3. One of the "triangles" isn't really a triangle. Which one and why not?

Triangle 4: 4, 6, and 8.

- 4. Which do you think has the greater area?
- 5. Use Heron's Theorem to find it.

9.4 - Parallelograms and Trapezoids

9. aABCD = \frac{1}{2}bh + \frac{1}{2}bh

w. a ABCD = bh

Theorem 40 - The area of a parallelogram is the product of any base and corresponding altitude.

Simplification

Theorem 41 - The area of a trapezoid is half the product of its altitude and the sum of its bases.

- **HW #7 (due Fri. 01/16)** Ch 8 Review (pp. 325-329)
- Midterm Review (pp. 330-336)

Test #3 - Friday 01/16