

Tues./Wed. 02/03 (2nd per.) 02/04 (3rd per.) - **Quiz #7** (Ch 10 similarity) Fri. 02/06 - **HW #10** (Ch 10 Review) due; **Test #4** Tues./Wed. 02/10 (2nd per) 02/11 (3rd per.) 9:00-11:00 - **<u>Final Exam</u>**

Chapter 10 - Similarity

Def: The **<u>ratio</u>** of the number a to the number b is the number $\frac{a}{b}$.

A **proportion** is an equality between ratios. $\frac{a}{b} = \frac{c}{d}$

a, b, c, and d are called the *first, second, third, and fourth terms*.

The second and third terms, b and c, are called the <u>means</u>.

The first and fourth terms, a and d, are called the <u>extremes</u>.

The product of the means is equal to the product of the extremes.

If $\frac{a}{b} = \frac{c}{d}$, then ad = bc.

Def: The number b is the **geometric mean** between the numbers a and c if a, b, and c are positive and $\frac{a}{b} = \frac{b}{c}$.

Def: Two triangles are **similar** iff there is a correspondence between their vertices such that their corresponding sides are proportional and their corresponding angles are equal.

Theorem 44 - The Side-Splitter Theorem

If a line parallel to one side of a triangle intersects the other two sides in different points, it divides the sides in the same ratio, that is, if in triangle ABC, DE||BC, then $\frac{AD}{DB} = \frac{AE}{FC}$.

Corollary to the Side-Splitter Theorem:

If a line parallel to one side of a triangle intersects the other two sides in different points, it cuts off segments proprtional to the sides, that is,

 $\frac{AD}{AB} = \frac{AE}{AC}$ and $\frac{DB}{AB} = \frac{EC}{AC}$

<u>Theorem 45</u> - <u>The AA Theorem</u> - If two angles of one triangle are equal to two angles of another triangle, the triangles are similar.

<u>Corollary to the AA Theorem</u> - Two triangles similar to a third triangle are similar to each other.

<u>Theorem 46</u> - Corresponding altitudes of similar triangles have the same ratio as that of the corresponding sides. <u>Given</u>: ΔABC~ΔDEF; BG and EH are altitudes <u>Prove</u>: $\frac{BG}{EH} = \frac{AC}{DF}$

<u>Theorem 47</u> – The ratio of the perimeters of two similar polygons is equal to the ratio of the corresponding sides. <u>Given</u>: ΔABC~ΔA'B'C' <u>Prove</u>: $\frac{\rho \Delta ABC}{\rho \Delta A'B'C'} = r$, where $r = \frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}$

<u>Theorem 48</u> – The ratio of the areas of two similar polygons is equal to the square of the ratio of the corresponding sides. <u>Given</u>: $\triangle ABC \sim \triangle A'B'C'$ <u>Prove</u>: $\frac{\alpha \triangle ABC}{\alpha \triangle A'B'C'} = r^2$, where $r = \frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}$ <u>10.4</u>

50.

<u>Given</u>: \triangle ABC with midsegments MN, MO, and NO <u>Prove</u>: \triangle MNO \sim \triangle ABC

10.5 (#40-61)

<u>SAS Similarity Theorem</u>: If an angle of one triangle is equal to an angle of another triangle and the sides including these angles are proportional, then the triangles are similar.

<u>Given</u>: \triangle ABC and \triangle A'B'C' with \angle A= \angle A' and $\frac{b}{b'} = \frac{c}{c'}$. <u>Prove</u>: \triangle ABC~ \triangle A'B'C'

SSS Similarity Theorem: If the sides of one triangle are proportional to the sides of another triangle, then the triangles are similar.

<u>Given</u>: \triangle ABC and \triangle A'B'C' with $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$. <u>Prove</u>: \triangle ABC~ \triangle A'B'C'

<u>10.6</u>

Triangle Ratios (#1-9)

SAT Problem (#32-36)