

Area Review

Area of any triangle with unknown altitude but known side lengths a, b, and c, is $\sqrt{s(s-a)(s-b)(s-c)}$
where s is half the perimeter $s=(1 / 2)(a+b+c)$

Tues./Wed. 02/03 (2nd per.) 02/04 (3rd per.) - Quiz \#7 (Ch 10 similarity)
Fri. 02/06-HW \#10 (Ch 10 Review) due; Test \#4
Tues./Wed. 02/10 (2nd per) 02/11 (3rd per.) 9:00-11:00 - Final Exam

Chapter 10 - Similarity

Def: The ratio of the number a to the number b is the number $\frac{a}{b}$.
A proportion is an equality between ratios. $\frac{a}{b}=\frac{c}{d}$
a, b, c, and d are called the first, second, third, and fourth terms.
The second and third terms, b and c, are called the means.
The first and fourth terms, a and d, are called the extremes.
The product of the means is equal to the product of the extremes.
If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$.
Def: The number b is the geometric mean between the numbers a and c if a, b, and c are positive and $\frac{a}{b}=\frac{b}{c}$.

Def: Two triangles are similar iff there is a correspondence between their vertices such that their corresponding sides are proportional and their corresponding angles are equal.

Theorem 44-The Side-Splitter Theorem
If a line parallel to one side of a triangle intersects the other two sides in different points, it divides the sides in the same ratio, that is, if in triangle $\mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$, then $\frac{A D}{D B}=\frac{A E}{E C}$.

Corollary to the Side-Splitter Theorem:

If a line parallel to one side of a triangle intersects the other two sides in different points, it cuts off segments proprtional to the sides, that is,
$\frac{A D}{A B}=\frac{A E}{A C}$ and $\frac{D B}{A B}=\frac{E C}{A C}$

Theorem 45 - The AA Theorem - If two angles of one triangle are equal to two angles of another triangle, the triangles are similar.
Corollary to the AA Theorem - Two triangles similar to a third triangle are similar to each other.

Theorem 46 - Corresponding altitudes of similar triangles have the same ratio as that of the corresponding sides.
Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$; BG and EH are altitudes Prove: $\frac{B G}{E H}=\frac{A C}{D F}$

Theorem 47 - The ratio of the perimeters of two similar polygons is equal to the ratio of the corresponding sides.
Given: $\Delta \mathrm{ABC} \sim \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \quad$ Prove: $\frac{\rho \Delta \mathrm{ABC}}{\rho \Delta A^{\prime} B^{\prime} C^{\prime}}=r$, where $r=\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C A}{C^{\prime} A^{\prime}}$

Theorem 48 - The ratio of the areas of two similar polygons is equal to the square of the ratio of the corresponding sides.
Given: $\Delta \mathrm{ABC} \sim \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \quad$ Prove: $\frac{\alpha \Delta \mathrm{ABC}}{\alpha \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}}=r^{2}$, where $r=\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=\frac{C A}{C^{\prime} A^{\prime}}$
10.4
50.

Given: $\triangle \mathrm{ABC}$ with midsegments MN, MO, and NO
Prove: $\triangle \mathrm{MNO} \sim \triangle \mathrm{ABC}$
10.5 (\#40-61)

SAS Similarity Theorem: If an angle of one triangle is equal to an angle of another triangle and the sides including these angles are proportional, then the triangles are similar.

Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ with $\angle \mathrm{A}=\angle \mathrm{A}^{\prime}$ and $\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}$.
Prove: $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$

SSS Similarity Theorem: If the sides of one triangle are proportional to the sides of another triangle, then the triangles are similar.

Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ with $\frac{a}{a^{\prime}}=\frac{b}{b^{\prime}}=\frac{c}{c^{\prime}}$.
Prove: $\triangle A B C \sim \Delta A^{\prime} B^{\prime} C^{\prime}$

10.6

Triangle Ratios (\#1-9)
SAT Problem (\#32-36)

