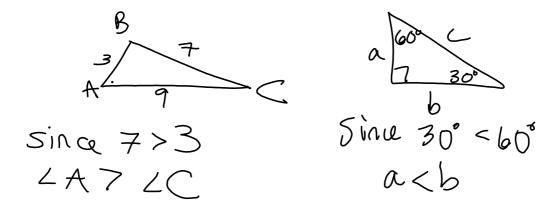

- Ch 5 Review Problems pp. 206-209 #15-50 due FRIDAY 01/06
- TEST #2 Monday 01/09??
- Ch 6 Review Problems pp. 250-254 #9-19, 33-53

SAT Problem:

If x is an integer and $2 \le x \le 7$, how many different triangles are there with sides of lengths 2, 7, and x?

15. Could x=3? Why or why not?

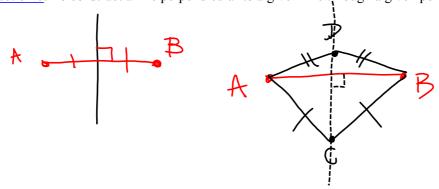

No. If x=3, then a+x=2+3=5<7
so the Triangle Inequality fails

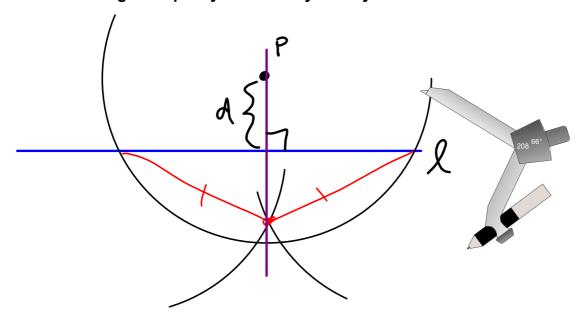
16. What do you think is the answer to the problem? Explain.

(X=6 works) X=7 beause 747 Only 1 triange

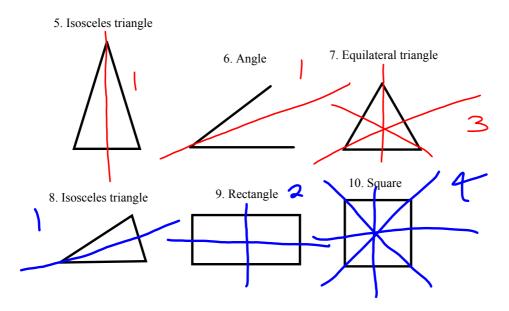
Heron's Proof of the Triangle Inequality

Given: ABC is a triangle. В Prove: AB+BC>AC Proof: **Statements** Reasons 24. Let BD bisect **ABC** 25. 1= 26. 2 and 4> 27. 4> 2 3> 1 and 28. AB>AD and BC>DC Addition Theorem of Inequality 29. AB+BC>AD+DC Betweenness of Points Theorem 30. AD+DC=AC Substitution #30 into 29 31. AB+BC>AC




<u>6.1 – Line Symmetry</u>

Def: Two points are <u>symmetric with respect to a line</u> iff the line is the perpendicular bisector of the line segment connecting the two points.


<u>Theorem 16</u>: In a plane, two points each equidistant from the endpoints of a line segment determine the perpendicular bisector of the line segment.

Construction 6: To construct a line perpendicular to a given line through a given point.

Sketch the lines of symmetry.

