- Ch 5 Review Problems pp. 206-209 #15-50 due FRIDAY 01/06 - TEST #2 Wednesday 01/11 - > mostly Ch 4-5 - > some review of Ch 1-3 - > Vocab from Ch 6 through Theorem 21 - Ch 6 Review Problems pp. 250-254 #9-19, 33-53 due Fri 01/13 <u>Theorem 17</u>: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. <u>Corollary 2</u>: Supplementary interior angles on the same side of a transversal mean that lines are parallel. Corollary 3: In a plane, two lines perpendicular to a third line are parallel. <u>The Parallel Postulate</u> – Through a point not on a line, there is exactly one line parallel to the given line. Theorem 18: In a plane, two lines parallel to a third line are parallel to each other. Theorem 19: Parallel lines form equal corresponding angles. Corollary 1: Parallel lines form equal alternate interior angles. Corollary 2: Parallel lines form supplementary interior angles on the same side of a transversal. Corollary 3: In a plane, a line perpendicular to one of two parallel lines is also perpendicular to the other. Theorem 20: The Angle Sum Theorem – The sum of the angles of a triangle is 180°. Corollary 1: If two angles of one triangle are equal to two angles of another triangle, the third angles are equal. Given: ZA=ZD ZB=ZE To Prove: 2C=2F Proof 1. LA=LD, LB=LE 2. LA+16+2C=180° 1 D1 LE 12F = 180° 3. LC=180°-LA-LB 2F=180°-2D-2E 4.20 - 180°-LD-20 5. LC=<F GIVE Triangle sum Theorem Subtraction property of equality SWOSTITION (#1 in to #3) Substitution (#4 int #3) Corollary 2: The acute angles of a right triangle are complementary. Given: AABC is a right 2 with right angle (To Prove: LA and LB or complementary 1. DABC is a right D 2. ZA+ZB+ZC=180° Triangle Sum Theorem 3.40=90° 4. LA + LB + 90° = 180° 5. $\angle A + \angle B = 90^{\circ}$ Subtraction 6. $\angle A$ and $\angle B$ are complimately complements 5 vm to 90 Right L's measure 90° Substitution Corollary 3: Each angle of an equilateral triangle is 60°. Given: ABC is equilateral To Prove: ZA = ZB = ZC = 60° Proof: 1. DABC is equilatural Z. ABC is equiagular <A=2B=2C 3. LA+LB+LC=180° 4. ZA+ZA+ZA=180° 3<4=1800 5. LA=60° 6. (B-20,=60° Equilateral D's are equilagular Triangle Sum Thearen Division labory of 5 Jost motion Theorem 21: An exterior angle of a triangle is equal to the sum of the remote interior angles. Given: 21 is an exterior angle of LABC W/ remote Interior 2's A&R To Prove: < 1 = LA + GB PROOF 1.21 is an extenor angle of SABC 2. Ll and LC form a linear pair 4. 21 +2C=(80) Given Def. of exterior angle 1's in a linear pair are suppl. Sippl. L's sum to 180. Triongle Sum Theorem 5. < A + < B + < C = 180° 6. 21 + CC = LA+CB+ZC substitution 7. 21=2A+2R Jubtraction Statements: 27. BG=GE, UG=GL 28. Vertical CS 29. ∠BGU=∠EGL 30. BGU=∠EGL 31. BU=EL Reasons: Given Vertical C's one equal SAS Congruence COrresponding ports of Congruence Co Given: $\angle T$ and $\angle 2$ are complements of $\angle 1$; | TA=AU;
TU=UB. | | |---|---| | Prove. AU=AB. | A T | | Statements: | Reasons: | | 39. TA=AU; TU=UB | Given | | 41. ∠T+ =90° | Complementary angles sum to 90° | | 42. ∠2+∠1= 20 | Complementary angles sum to 90° | | 43. ∠T+∠1=∠2+∠1 | Substitution | | 44. <u>27322</u> | Subtraction | | 45. ΔΑΤU≅ΔΑUB | <u> 6枚</u> | | 46. AU 7 AU | Corresponding parts of congruent triangles are equal. | Given: BP bisects ∠ABC;
BX=BY; | x A | | $\angle 1$ and $\angle 2$ form a linear pair. | B 12 P | | <i>Prove</i> : $XY \perp BP$. | | | Statements: | Reasons: | | 47. BX=BY | Biver | | 48. 26XZ = 28YZ | If two sides of a triangle are equal, the angles opposite them are equal. | | 49. BP bisects ∠ABC | Gi.MA | | 50. ∠CBP=∠ABP | angle bisector divides an angle how Zegul purs | | ,28X2 = 2BYZ | ASA congruence | | 52. ∠1= ∠2 | CAMESONALLY ANTS OF CONA MENT D'S ONE EQUILI | | | Conception of parts of congrest D's are equal (Silver) [FL'S in a linear pair re equal, thutheir sides | | 53. ∠1 and ∠2 form a linear pair | 1865 in a linear pair me equal thur their sides | | 54. XY ⊥ BP | ore publication | | | | Theorem: In a plane, a line perpendicular to one of two parallel lines is also perpendicular to the other. Given: c⊥a and a||b *Prove*: c⊥b **Statements** Reasons Given c⊥a or lines form rig 31. ∠1 is a right angle Right angles measure 90° Given Parallel lines form equal corresponding angles 34. ∠2=90° 35. ∠2 is a right angle 36. c⊥b Theorem: If two sides of a triangle are unequal, the angles opposite them are unequal in the same order. Given: ΔABC with BC>AC 42. *Prove*:**∠**8∧ **Statements** Reasons ΔABC with BC>AC Given Choose D on CB so that CD=CA Ruler Postulate 45. ∠CAB=∠CAD**+**∠DAB 46. ∠CAB>∠ CAD eithe renote int. L ∠CAB>∠CDA Substitution 47. ∠CDA>∠B Transitive