A <u>linear function</u> is a function of the form f(x) = mx + b or y = mx + b, where  $m = \underline{slope} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$  and the point (0, b) is the <u>y-intercept</u>, or the point where the graph of the function intersects the y-axis. The y-intercept of any function is found by plugging 0 in for x (evaluating f(0)). y = mx + b is called the <u>slope-intercept form</u> of the equation of a line.

Ax + By = C is the **standard form** of the equation of a line.

A <u>horizontal line</u> has an equation of the <u>form</u> y = b, where b is the y-coordinate of every point on the line. A horizontal line has a slope of 0.

A <u>vertical line</u> has an equation of the form x = a, where a is the x-coordinate of every point on the line. A vertical line has no slope.

The **<u>x-intercept</u>**(s) of any function are the point(s) (x, 0), found by substituting 0 in place of y in the equation (setting f(x) = 0) and solving for x.



Sections 3-3-3.6 Linear Functions

Point-slope formula:

$$y - y_1 = m(x - x_1)$$

Note that rearranged, this looks like:

$$m = \frac{y - y_1}{x - x_1}$$

Recall:

Slope-intercept equation:

$$y = mx + b$$

Standard Equation:

$$Ax + By = C$$

## Parallel & Perpendicular Lines:

Two lines with slopes  $m_1$  and  $m_2$  are parallel if and only if  $M_1 = M_2$ 

\*Vertical lines are perpendicular to horizontal lines

Two lines with slopes  $m_1$  and  $m_2$  are perpendicular if and only if  $M_1 = \overline{M_2}$ ;  $M_2 = \overline{M_1}$ ;  $M_1 M_2 = \overline{M_2}$ 

(negative reciprocal slopes)

Find the slope-intercept (y=mx+b) equation of the line:

1. slope 
$$\overset{\bullet}{2}$$
; passing through (3,7),  $y-y_1=m(x-x_1)$ 

$$y-7=2(x-3)$$

$$y = 2x + 1$$

2. passes through 
$$(-5, 2)$$
 &  $(6, -1)$   $M = \frac{\Delta y}{\Delta x} = \frac{-1 - 2}{6 - 65} = \frac{-3}{11} = -\frac{3}{11}$ 

$$y-2=-\frac{3}{11}(x+(+s))$$

$$y = -\frac{3}{11}x - \frac{15}{11} + \frac{2}{11} \cdot \frac{11}{11}$$

$$y = -\frac{3}{11} \times -\frac{15}{11} + \frac{22}{11}$$

<sup>\*</sup>All vertical lines are parallel.

3. Given the line 34x13, find the equation of a line parallel to this that passes through (4, 1).

$$m=4$$
 $y-1=4(x-4)$ 
 $y-1=4x-16$ 
 $y=4x-15$ 

4. Given the line y=-3x+7, find the equation of a line perpendicular to it that passes through (5,-8).

## Find the equation of the line:

5. Passes through (-7, 6); no slope

$$X=-7$$

6. Passes through (43, -269); slope 0

Are the two lines parallel, perpendicular, or neither?  $\underline{\bf 3.6}$ 

4. 
$$y = \frac{1}{2}$$
;  $y = -4$ 
parallel (both horizontal, slope 0)

10.  $y = \frac{1}{2}x + \frac{3}{2}$ ;  $y = -\frac{1}{2}x + \frac{3}{2}$ 
Neither one.

14.  $4x - 3y = 2$ ;  $4x + 3y = -7$ 
 $-3y = -4x + 2$ 
 $y = \frac{4}{3}x - \frac{2}{3}$ 
 $y = -\frac{4}{3}x - \frac{7}{3}$ 

Neither.

20.  $(3,5)&(-3,3)$ ;  $(2,-5)&(-4,4)$ 
 $M_1 = \frac{3-5}{3-3}$ 
 $M_2 = \frac{4-(-5)}{-4-2}$ 
 $M_3 = \frac{3-5}{3-3}$ 
 $M_4 = \frac{3-5}{3-3}$ 
 $M_5 = \frac{4}{3}$ 
 $M_7 = \frac{3-5}{3-3}$ 
 $M_$ 

## Quiz Tomorrow (Wednesday) on:

- midpoint
- distance
- slope
- equation of a line
- functions
- domain
- range

Wednesday and Friday we will look at solving systems of equations.