5.1 Exponential Expressions

$$x^n = \underbrace{X \cdot X \cdot X \cdot X \cdot X}_{\text{n-times}}$$

For $m, n, p \in \mathbb{Z}$ (integers),

$$x^{m}x^{n} = \times x^{n}$$

$$x^{2}x^{3} = \times x$$

$$\frac{x^{m}}{x^{n}} = \times x^{m-n}$$

$$\frac{x^{m}}{x^{n}} = \times x^{n-n}$$

$$\frac{x^{m}}{x^{m}} = \times x^{m}$$

$$\frac{x^{m}}{x^{m}} = x^{m}$$

$$\frac{x^{m}}{x^{m}}$$

$$\left(\frac{x^{m}}{y^{n}}\right)^{p} = \frac{x^{n}}{y^{n}}, y \neq 0$$

$$x^{0} = 1, x \neq 0$$

$$x^{-n} = \frac{1}{x^{-n}}, x \neq 0$$

$$\frac{1}{x^{-n}} = x^{n}$$

A <u>simplified</u> exponential expression contains:

- only one instance of each variable
- no negative exponents

4.
$$(-2ab^4)(-3a^2b^4) = (-2)(-3)a \cdot a^2 \cdot b^4 b^4$$

$$= 6a^3 b^8$$

20.
$$[(3x^2y^3)^2]^2 = [3^2 \cdot (x^2)^2 \cdot (y^3)^2]^2 = [9x^4y^6]^2$$

 $= 9^2(x^4)^2(y^6)^2 = [8|x^8y^2]^2$

$$66. \frac{6^{2}a^{-2}b^{3}}{3a'b^{4}} = \frac{36}{3a^{1-(-2)}b^{4-3}} = \frac{12}{3a^{3}b}$$

$$\frac{a^{-2}}{a^{1}} = \frac{a^{-2-1}}{a^{1}} = \frac{1}{a^{1-(-2)}}$$

$$\frac{a^{-3}}{a^{-3}} = \frac{1}{a^{3}b^{3}}$$

72.
$$\left(\frac{x^{-3}y^{-4}}{x^{-2}y'}\right)^{-2} = \left(\frac{1}{x^{2-(-3)}y^{(-(-4))}}\right)^{-2}$$

$$= \left(\frac{1}{x'y^{5}}\right)^{-2} = \frac{1}{x^{2-(-3)}y^{(-(-4))}} = \frac{1}{x^{2-(-3)}y^{(-(-4))}}$$

$$= \left(\frac{1}{x'y^{5}}\right)^{-2} = \frac{1}{x^{2-(-3)}y^{(-(-4))}} = \frac{1}{x^{2-(-3)}y^{(-$$

$$80. \left(\frac{4^{-2}xy^{-3}}{x^{-3}y}\right)^{3} \left(\frac{8^{-1}x^{-2}y}{x^{4}y^{-1}}\right)^{-2}$$

$$= \left(\frac{x^{1-(-3)}}{4^{2}y^{1-(-3)}}\right)^{3} \left(\frac{y^{1-(-1)}}{8^{1}x^{4-(-2)}}\right)^{-2} =$$

$$= \left(\frac{x^{4}}{16y^{4}}\right)^{3} \left(\frac{y^{2}}{8y^{6}}\right)^{-2} = \left(\frac{x^{4}}{2}\right)^{3} \left(\frac{y^{2}}{2}\right)^{-2} =$$

$$= \frac{x^{12}y^{-4}}{2^{12}y^{2}} = \frac{x^{12-(-12)}}{2^{12-16}y^{2}} = \frac{x^{12-(-12)}}{2^{12-16}y^{2}} = \frac{x^{12-(-12)}}{2^{12-16}y^{2}} =$$

$$= \frac{x^{2}y^{4}}{2^{16}y^{16}} = \frac{x^{12}}{y^{16}y^{16}} = \frac{x^{12}}{y^{16}y^{16}} = \frac{x^{16}}{y^{16}y^{16}} = \frac{x^{16}}{y^{16}} = \frac{x^{16}}{y^{16}$$

$$80. \left(\frac{4^{-2}xy^{-3}}{x^{-3}y}\right)^{3} \left(\frac{8^{-1}x^{-2}y}{x^{4}y^{-1}}\right)^{-2}$$

$$= \frac{4^{-6} - 3 - 9}{(x^{-9}) - 3} = \frac{8^{2} \times 9^{-2}}{(x^{-9}) - 3} = \frac{8^{2} \times 9^{-2}}{(x^{-9}$$

5.2 Introduction to Polynomials

A <u>polynomial</u> is an expression consisting of variables and constants, using only the operations of addition, subtraction, multiplication, and non-negative integer exponents.

A polynomial with one term is a monomial.

e.g.
$$3x^2$$
 or $5xy^3$

A polynomial with two terms is a binomial.

e.g.
$$7xy^5 - 3x$$
 or $xyzw + 23x^2$ or $x - 2$

A polynomial with three terms is a trinomial.

e.g.
$$x^2 + 5x - 6$$

The <u>degree of a monomial</u> is the sum of the exponents of the variables.

$$7xy^5$$
 has degree 6

xyzw has degree 4

$$13x^3yz^2$$
 has degree _____

$$-2ab^3$$
 has degree $\frac{1}{2}$

The <u>degree of a polynomial</u> is the greatest of the degrees of any of its terms.

$$x^2 + 5x - 6$$
 has degree 2

$$3xy - 15x^3y + 2v^3xz$$
 has degree

$$15xy^2 - \sqrt{2}x + 32xyz - 5000 \text{ has degree}$$

The terms of a polynomial in only one variable are usually arranged in descending order, so that the exponents of the variable decrease from left to right, in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x^1 + a_0 x^0$$

 a_n , ..., a_0 are real-numbered coefficients

 $a_n x^n$ is the <u>lead term</u> (term containing the variable with the largest exponent) a_n is the <u>leading coefficient</u> (coefficient of the variable with the largest exponent) a_0 is the <u>constant term</u> (term without a variable)

n is the <u>degree</u> of the polynomial (largest exponent)

The linear function f(x) = CThe linear function f(x) = mx + b is a polynomial of degree one.

A second-degree polynomial of the form $f(x) = ax^2 + bx + c$ is called a quadratic function.

A third-degree polynomial is called a cubic function.
$$f(\chi) = \alpha \chi^3 + b \chi^2 + c \chi + d$$

Problems from Section 5.2:

Is it a polynomial? If so, state the lead term, leading coefficient, degree, and constant term.

$$16. P(x) = 3x^4 - 3x - 7$$

Lead term:

Leading coefficient: Degree:

Constant term:

$$18. R(x) = \frac{3x^2 - 2x + 1}{x}$$

Lead term:

Constant term:

$$20. f(x) = x^{2}$$

Constant term

22.
$$g(x) = -4x^5 + 3x^2 + x - \sqrt{7}$$

Lead term: - 4

Leading coefficient:

Degree:

Constant term:

$$f(x) = 2x^{3} - 3x^{2} - x + \sqrt{3}x$$
lead term: $-x$
leading coeff: -1
degree: 5
Constant term: 0

To <u>evaluate a polynomial</u>, replace the variable by its value and simplify.

6. Given
$$R(x) = -x^3 + 2x^2 - 3x + 4$$
, evaluate $R(-1)$.

$$R(-1) = -(-1)^3 + 2(-1)^2 - 3(-1) + 4 =$$

$$= -(-1) + 2(1) + 3 + 4 =$$

$$= 1 + 2 + 7 = 10$$

Polynomials can be added by combining like terms.

36.
$$(3x^{2} - 2x + 7) + (-3x^{2} + 2x - 12)$$

 $3x^{2} + (-3x^{2}) + (-2x) + 2x + 7 + (-12)$
 $= 0 + 0 + (-5) = -5$
42. $(3a^{2} - 9a) - (-5a^{2} + 7a - 6)$
 $3a^{2} - 9a + 5a^{2} - 7a + 6$
 $= 8a^{2} - 16a + 6$
50. $(2x^{4} - 2x^{2} + 1) - (3x^{3} - 2x^{2} + 3x + 8)$
 $2x^{4} - 3x^{3} - 3x - 7$

46.
$$(2x^{2n} - x^n - 1) - (5x^{2n} + 7x^n + 1)$$

 $-3x^{2n} - 8x^{n} - 2$

Homework:

Problems from 5.1 and 5.2 on Khan Academy:

5.1	Exponential Expressions	Positive and zero exponents Negative exponents Patterns in zeros Exponent rules Scientific notation intuition Scientific notation Multiplying and dividing scientific notation Orders of magnitude Simplifying expressions with exponents
5.2	Introduction to Polynomials	Adding and subtracting polynomials