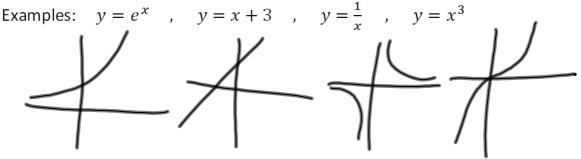

Inverse Trigonometric Functions

(6.4 book / 6.5 handout)


Recall from Algebra:

• f is a function if each input value (x) has a unique output f(x).

Examples: $f(x) = x^2 - 2$, $f(x) = \sqrt{x}$

• f is one-to-one if, in addition, each y corresponds to only one x.

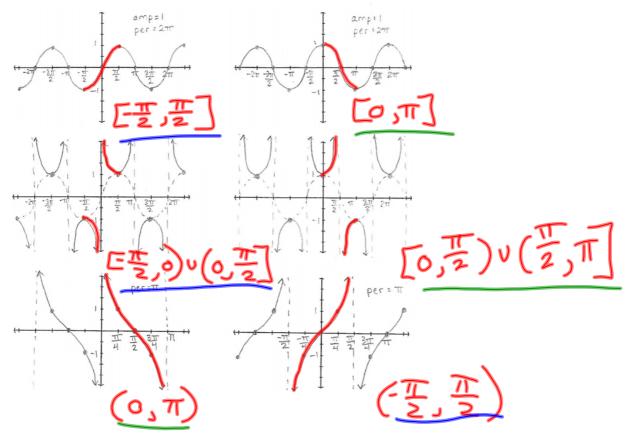
- If f is a one-to-one function, we can define its inverse $f^{-1}(x)$. Note that this notation is not exponentiation, i.e. $f^{-1}(x) \neq \frac{1}{f(x)}$
- f(x) and g(x) are inverses if $(f \circ g)(x) = f(g(x)) = x = g(f(x)) = (g \circ f)(x),$ that is, inverse functions "undo" each other.

Example: $f(x) = x^3$, $g(x) = \sqrt[3]{x}$ $(f \circ g)(x) = f(g(x)) = 13/x$

What do we mean by an Inverse Trig function?

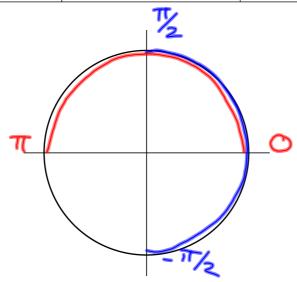
Recall that for a basic Trigonometric function, e.g. $f(x) = \sin x$,

- The input (x) is an angle
- The output f(x) is a ratio of sides


So for an inverse Trigonometric function,

- The input (x) is a ratio of sides
- The output f(x) is an angle

Construction of the inverse of $f(x) = \sin x$:

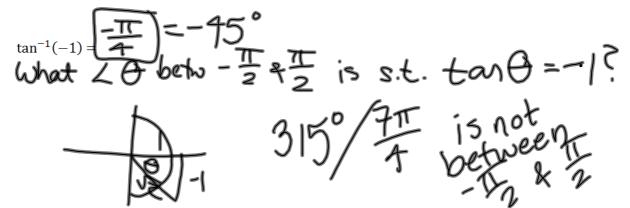

$$y = sin x$$

 $x = sin y$
 $y = the angle whose sine value is x$
 $f(x) = sin^{-1}(x)$ or $f'(x) = arcsin(x)$
 $\Rightarrow sin^{-1}(x) \neq \frac{1}{sin x}$

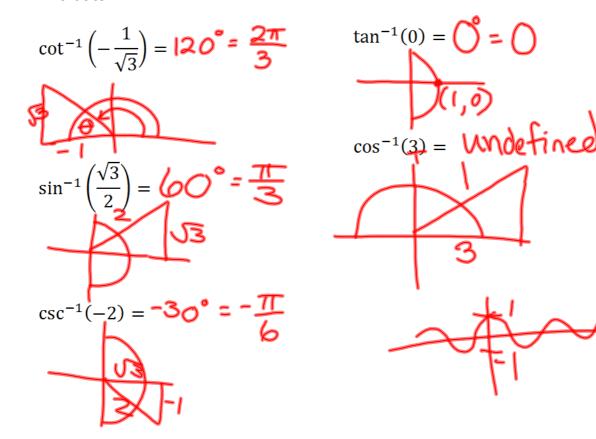
But Trigonometric functions aren't one-to-one – how is the inverse defined? We must restrict the domain!

Summary of Restricted Domains:

Interval	Functions	Quadrants
$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	sinx,cscx,tanx	IV & I
$(0,\pi)$	$\cos x$, $\sec x$, $\cot x$	1&11


Evaluate the inverse trigonometric expression.

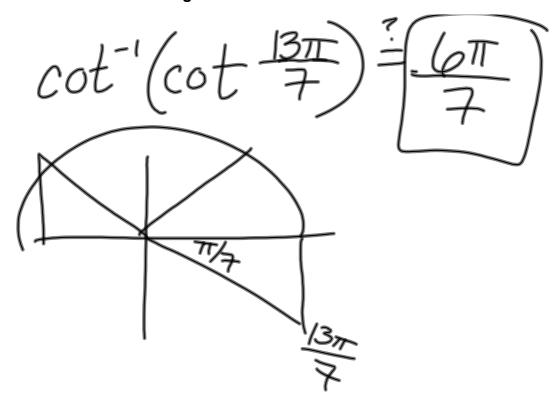
 $\sin^{-1}\left(\frac{1}{2}\right) = 30^{\circ} = \frac{\pi}{6} \iff \sin 30^{\circ} = \frac{1}{2}$

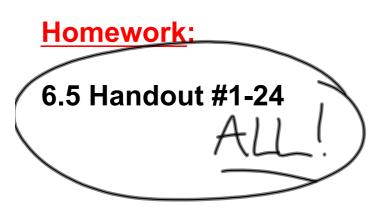

In words: What angle θ , between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ (the restricted domain for sine) is such that $\sin\theta = \frac{1}{2}$?

 $\cos^{-1}\left(-\frac{1}{2}\right) = 120^{\circ} = \frac{2\pi}{3}$

In words: What angle θ , between 0 and π (the restricted domain for cosine) is such that $\cos\theta=-\frac{1}{2}$?

Evaluate.




What happens when we compose a Trigonometric function with its inverse?

According to the definition,

f(x) and g(x) are inverses if f(g(x)) = x and g(f(x)) = x (for all x-values in the respective domains of g and f)

We would then expect $\sin(\sin^{-1}x) = x \text{ and } \sin^{-1}(\sin x) = x$ $\sin\left(\sin^{-1}\frac{1}{2}\right) = \sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right) = \sin^{-1}\left(\sin\left(\frac{5\pi}{6}\right)\right) = \sin^{-1}\left(\cos\left(\frac{8\pi}{7}\right)\right) = \sin^{-1}\left(\sin\left(\frac{8\pi}{7}\right)\right) = \sin^{-1}\left(\sin\left$

