Convert 120° to radians.

Convert $\frac{7\pi}{4}$ to degrees.

$$\frac{7\pi}{4} \cdot \frac{180^{\circ}}{\pi} = 315^{\circ}$$

Two angles in radians are:

complementary if they sum to $\frac{\pi}{2} = 96^{\circ}$ supplementary if they sum to $\pi = 180^{\circ}$ coterminal if they differ by integer multiples of $2\pi = 360^{\circ}$

Find the complement and supplement of
$$\frac{5\pi}{12}$$
.

C: $\frac{\pi}{2} - 5\pi = 6\pi - 5\pi = 12$

S: $\pi - 5\pi = 12\pi - 5\pi = 7\pi/2$

Find one positive and one negative angle coterminal with $-\frac{3\pi}{4}$.

 $\frac{3\pi}{4} + 2\pi = -\frac{3\pi}{4} + 8\pi = 5\pi + \frac{3\pi}{4} = -\frac{11\pi}{4}$

Arc Length & Angular Speed

Arc Length

r = radius or distance fromthe center of rotation (in, cm, km, etc.)

s =arc length or distance traveled along the circumference of a circle (in, cm, km, etc.)

 θ = angle or amount of rotation (deg, rad, revolutions, etc.)

$$s = r\theta$$

1.
$$r = 5in$$
; $\theta = 45^{\circ}$; $s = ?in$

$$S = \bigcap_{i=1}^{\infty} \frac{45^{\circ}}{180^{\circ}} = \frac{5\pi}{4} \text{ in}$$
2. $s = 16yards$; $\theta = 5$; $r = ?yards$

$$S = \bigcap_{i=1}^{\infty} \frac{6\pi}{4} = \frac{6\pi}{5}$$

$$S = \bigcap_{i=1}^{\infty} \frac{6\pi}{4} = \frac{6\pi}{5}$$

$$S = \bigcap_{i=1}^{\infty} \frac{6\pi}{5} = \frac{6\pi}{5}$$

3. Find the measure of a rotation in radians when a point 2 meters from the center of rotation travels 4 meters.

$$\Theta = ? rod; r = 2m; S = 4m$$

$$S = FA$$

$$O = S = 4m = 2$$

Linear Speed

$$v = \frac{S}{t}$$

Angular Speed

$$\omega = \frac{\theta}{t}$$
Arc Length

Arc Length

$$s = r\theta$$

Relating Linear & Angular Speed

$$V = \frac{s}{t} = \frac{r\theta}{t} = rW$$

$$V = rW$$

- **r** = radius or distance from the center of rotation (in, cm, km, etc.)
- s = arc length or linear distance along the circumference of a circle (in, cm, km, etc.)
- $\theta =$ angle or amount of rotation (deg, rad, revolutions, etc.)

t = time

(sec, min, hours, years, etc.)

$$v = \frac{\text{linear distance}}{\text{time}} = \frac{\text{linear speed}}{\left(\frac{km}{s}, \frac{mi}{h}, etc.\right)}$$

$$\omega = \frac{\text{amount of rotation}}{\text{time}} = \underline{\text{angular speed}}$$

$$\left(\frac{rev}{min}, \frac{deg}{s}, etc.\right)$$

Handout Problems:

1. A wheel with a 15 inch diameter rotates at a rate of 6 radians per second. What is the linear speed of a point on its rim in feet per minute?

$$r = \frac{15in}{2}$$
; $w = \frac{6rad}{5}$; $V = ?$ ft min
 $V = rw = \frac{15in}{2}$. $\frac{3}{6rad}$. 1ft $\frac{508}{12in}$ = $\frac{225}{2}$ ft min

2. An earth satellite in circular orbit 1200 km high makes one complete revolution every 90 minutes. What is its linear speed in km/min, given that the earth's radius is 6400 km?

V=rw=7600km
$$V = 7600$$
km $V = 7600$ km $V =$

3. Through how many radians does the minute hand of a clock rotate from 12:45pm to 1:25pm?

$$\theta = \frac{1}{5} \text{ rad}; t = 40 \text{ min}; \omega = \frac{1}{1} \text{ rot}$$

$$t \cdot \omega = \frac{\theta}{t} \cdot t$$

$$\theta = \omega \cdot t = \frac{1}{5} \text{ rot} \cdot \frac{40 \text{ min}}{1} \cdot \frac{1}{5} \text{ rot}$$

$$= \frac{4\pi}{3}$$

4. A car travels at 60 miles per hour. Its wheels have a 24 inch diameter. What is the angular speed of a point on the rim of a wheel in revolutions per minute?

$$V = 60 \text{ mi}; \ \Gamma = 12 \text{ in}; \ \omega = \frac{2 \text{ rev}}{2 \text{ min}}$$

$$V = \frac{1}{12 \text{ in}} \quad \omega = \frac{1}{12 \text{ in}} \quad$$

Homework due this Friday:

Already assigned:

• 5.1 #1, 2, 7-18 all, 31-54 all

New:

- 4 problems on handout
- 5.1 #55-74 all

Due next Wednesday, 11/13:

"Do you know enough Algebra..." take-home quiz