
Review:

An acute angle is between 0° 4 90°

The function value of an angle is equal to the cofunction value of the complement of that angle.

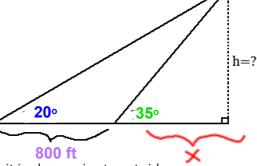
$$\sin 45^\circ = \sqrt{2} \qquad \sec 60^\circ = 2$$

$$\cos 30^\circ = \sqrt{3}/2 \qquad \csc 45^\circ = \sqrt{2}$$

$$csc 45^{\circ} = \sqrt{2}$$

$$\tan 45^\circ =$$

$$\cot 30^{\circ} = \boxed{3}$$


5.2 #21 the sand dune problem:

$$\tan 35^{\circ} = \frac{h}{x} \quad \tan 20^{\circ} = \frac{h}{x + 800}$$

 $x \tan 35^{\circ} = h$ Substitution yields:

Substitution yields:

$$x = \frac{h}{\tan 35^{\circ}} \qquad \tan 20^{\circ} = \frac{h}{\frac{h}{\tan 35^{\circ}} + 800}$$

When confronted by an equation involving fractions, it is always nice to get rid of the fractions by multiplying both sides by the least common denominator.

$$\left(\frac{h}{\tan 35^{\circ}} + 800\right) \cdot \tan 20^{\circ} = \frac{h}{\tan 35^{\circ}} + 800 \cdot \left(\frac{h}{\tan 35^{\circ}} + 800\right)$$

Distribution yields: $h \frac{\tan 20^{\circ}}{\tan 35^{\circ}} + 800 \tan 20^{\circ} = h$

When more than one instance of your variable appears, try to get all instances of the variable on one side and everything else on the other side.

$$800 \tan 20^{\circ} = h - \frac{h \tan 20^{\circ}}{\tan 35^{\circ}}$$

To get h by itself, factor and then divide.

800tan **20°** =
$$h\left(1 - \frac{\tan \frac{20°}{\tan \frac{35°}{}}}{\tan \frac{35°}{}}\right)$$

$$h = \frac{800 \tan \frac{20}{0}}{1 - \frac{\tan \frac{20}{0}}{\tan \frac{3}{0}}} \approx 606 \text{ ft}$$

Reciprocal Identities

$$\csc x = \frac{1}{\sin x}$$
, $\sin x = \frac{1}{\csc x}$, $\sec x = \frac{1}{\cos x}$, $\cos x = \frac{1}{\sec x}$, $\cot x = \frac{1}{\tan x}$, $\tan x = \frac{1}{\cot x}$

Cofunction Identities:

$$\sin(90^{\circ} - \theta) = \cos \theta$$
 , $\cos(90^{\circ} - \theta) = \sin \theta$
 $\tan(90^{\circ} - \theta) = \cot \theta$, $\cot(90^{\circ} - \theta) = \tan \theta$
 $\csc(90^{\circ} - \theta) = \sec \theta$, $\sec(90^{\circ} - \theta) = \csc \theta$

Ratio Identities:

$$\frac{\sin\theta}{\cos\theta} = \frac{(\frac{\partial P}{\partial y})}{(\frac{\partial y}{\partial y})} = \frac{\partial P}{\partial y} = \frac{\partial P}{\partial y} = \frac{1}{\partial y} = \frac{$$

Example Problem 5.1 #98

Given that

$\sin 8^{\circ} \approx 0.1392$	$\csc 8^{\circ} \approx 7.1853$
$\cos 8^{\circ} \approx 0.9903$	$\sec 8^{\circ} \approx 1.0098$
$\tan 8^{\circ} \approx 0.1405$	$\cot 8^{\circ} \approx 7.1154$

find the six function vales of 82°.

Write in terms of $\sin 40^{\circ}$ and/or $\cos 40^{\circ}$.

$$csc 40^{\circ} = \frac{1}{\sin 40^{\circ}}$$

$$csc 50^{\circ} = \sec 40^{\circ} = \frac{1}{\cos 40^{\circ}}$$

$$cot 40^{\circ} = \frac{\cos 40^{\circ}}{\sin 40^{\circ}}$$

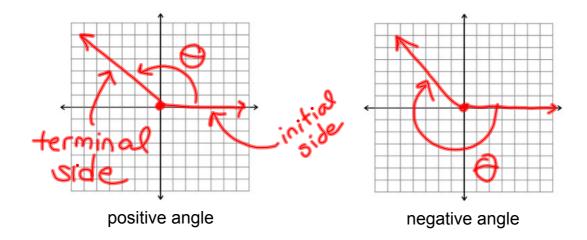
$$tan 50^{\circ} = \frac{\sin 50^{\circ}}{\cos 50^{\circ}} = \frac{\cos 40^{\circ}}{\sin 40^{\circ}}$$

$$cos 50^{\circ} = \sin 40^{\circ}$$

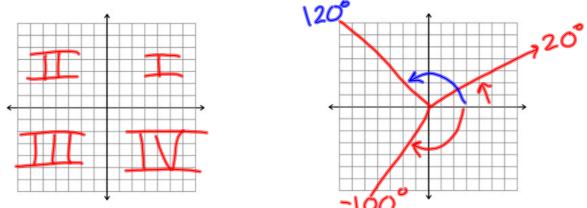
$$sec 50^{\circ} = \frac{1}{\cos 50^{\circ}} = \frac{1}{\sin 40^{\circ}}$$

How many different ways can you rewrite the expression using ratio, reciprocal, and/or cofunction identities?

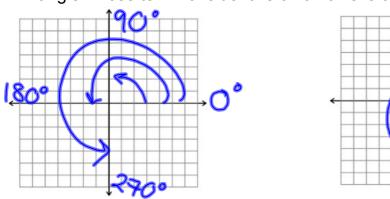
$$\sin 32^{\circ} = \cos (90^{\circ} - 32^{\circ}) = \cos 58^{\circ}$$

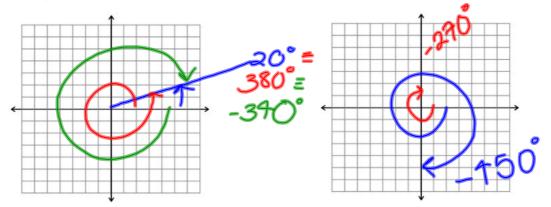

$$= \frac{1}{\csc 32^{\circ}} = \frac{1}{\sec 58^{\circ}}$$

$$\tan 13^{\circ} = \cot 77^{\circ} = \frac{\sin 13^{\circ}}{\cos 13^{\circ}} = \frac{\cos 77^{\circ}}{\cot 13^{\circ}} = \frac{\cos 77^{\circ}}{\sin 77^{\circ}}$$

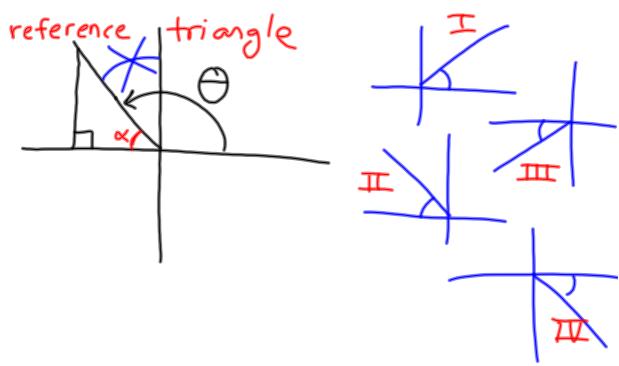

$$= \frac{1}{\tan 77^{\circ}} = \frac{\sin 13^{\circ}}{\sin 77^{\circ}} = \frac{\cos 77^{\circ}}{\cos 13^{\circ}} = \frac{\sec 13^{\circ}}{\sec 13^{\circ}} = \frac{\sec 13^{\circ}}{\sec 13^{\circ}} = \frac{\sec 13^{\circ}}{\sec 13^{\circ}}$$

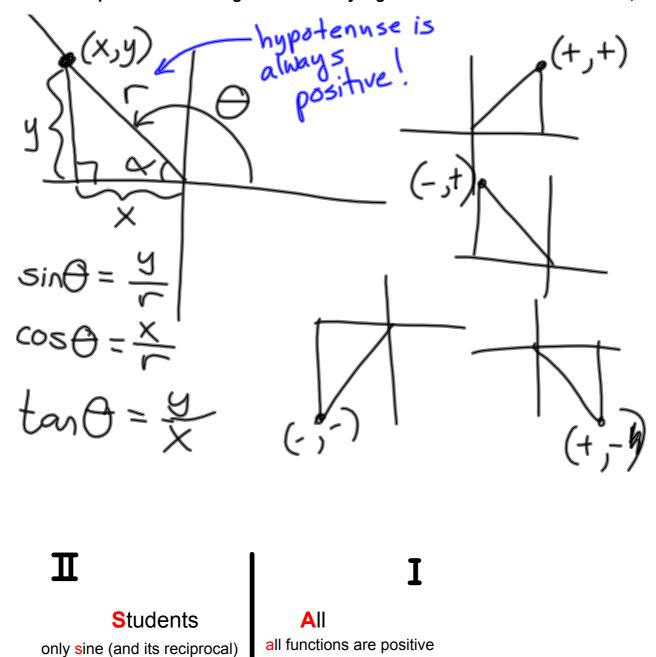
5.3 Trigonometric Functions of Any Angle


An angle in standard position has its vertex at the origin and initial side on the positive x-axis, and is measured counter-clockwise.


The coordinate plane is divided into four quadrants.

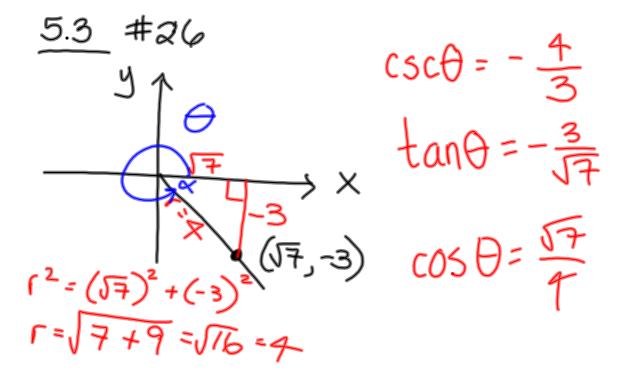
An angle whose terminal side falls on an axis is called a <u>quadrantal angle</u>.




Two angles sharing a terminal side are called <u>coterminal</u> and differ by integer multiples of 360°.

Find two positive and two negative angles that are coterminal with 89°.

For an angle in standard position, the reference angle is the acute angle between the terminal side of the angle and the x-axis.


Tells us which functions are positive in which quadrants.

Calculus

only cosine (and its reciprocal)

Take

only tan (and its reciprocal)

Homework:

5.1 #83-97 odd