Review:

A <u>reference angle</u> for an angle whose inial side is on the posive x-axis and terminal side may lie in any of the four quadrants is the positive acute

angle between the terminal side of the angle and the X-axis

Evaluate the following trigonometric expressions. Give exact answers. You do not have to raonalize. Draw a picture if this helps you.

17 total possible points; grades out of 15 points

Quiz #1 Solutions

$$\frac{1}{\sec x} = \cos x$$

$$\frac{\sin x}{\cos x} = \tan x$$

$$\frac{1}{\sin x} = \csc x$$

$$\csc(90^{\circ} - x) = \sec x$$

$$\tan(90^{\circ} - x) = \cot x$$

$$\tan A = \frac{5}{12}$$

 $\csc A = \frac{13}{5}$

Angles with the same reference angles have the same trig function values (up to positive/negative values)

Cos 153

Cos 27

-y

333

80. Given that $\sin 27^\circ \approx 0.4540$, $\cos 27^\circ \approx 0.8910$, and $\tan 27^\circ \approx 0.5095$, find the trigonometric function values for 333°.

333° has a 27° reference engle

$$sin333° = -sin27° = -0.4546$$

 $cos333° = -cos27° = 0.8910$
 $tan333° = -tan27° = -0.5095$

5.4 Radians

The circumference of a circle of radius r is given by the equation:

Therefore, the unit circle, which has radius 1, has circumference:

$$2\pi$$

The irrational number pi is approximately: $\pi \approx 3.14$

Therefore
$$2\pi \approx 6.28$$
 $4\pi \approx 12.56$

If we think about these numbers as corresponding to arc lengths around the unit circle, in which quadrant (or on which axis) do we end up?

What is a radian?

r = radius length

s = arc length

When s=r, we say that the corresponding angle θ which is subtended by arc s has measure 1 radian.

1 radian $\approx 57.3^{\circ}$

$$\pi = 180^{\circ}$$

$$2\pi = 360^{\circ}$$

Note that θ is independent of the radius length and any unit of measurement. Therefore radians have no associated units, and any angle measure without a degree symbol is assumed to be in radians.

Converting between radians and degrees

$$\pi = 180^{\circ}$$
 : $\frac{\pi}{180^{\circ}} = 1 = \frac{180^{\circ}}{\pi}$

Convert 225° to radians.

Convert 120° to radians.

$$120^{8} \cdot \pi = \frac{2\pi}{3}$$

Convert $\frac{7\pi}{4}$ to degrees.

$$\frac{7\pi}{4} \cdot \frac{180^{\circ}}{1} = 315^{\circ}$$

Two angles in radians are:

<u>complementary</u> if they sum to $\frac{n}{2}$

supplementary if they sum to π .

coterminal if they differ by integer multiples of 2π .

Find the complement and supplement of $\frac{5\pi}{12}$.

comp:

$$\frac{6\pi}{62} - \frac{5\pi}{12} = \frac{6\pi}{12} \cdot \frac{5\pi}{12} = \frac{\pi}{12}$$

Find one positive and one negative angle coterminal with

$$\frac{-3\pi}{4} + \frac{2\pi \cdot 4}{4} = \frac{-3\pi}{4} + \frac{8\pi}{4} = \frac{5\pi}{4}; \quad -3\pi - 8\pi = 4$$

Common angles: (memorize!)

$$\frac{\pi}{6} = 30^{\circ}$$

$$\frac{\pi}{4} = 45^{\circ}$$

$$\frac{\pi}{3} = 60^{\circ}$$

Note:

$$\frac{k\pi}{6} \rightarrow 30^{\circ} \, ref. \angle$$

$$\frac{k\pi}{4} \rightarrow 45^{\circ} \ ref. \angle$$

$$\frac{k\pi}{3} \rightarrow 60^{\circ} \, ref. \angle$$

$$\frac{k\pi}{2}$$
 \rightarrow 90° or 270°

$$k\pi \rightarrow 0^{\circ} for \ k \ even;$$

180° for k odd

Homework:

Assigned Friday: 5.1 #83-97 02

Assigned Monday: 5.3 #29-37 odd; 39-70 all;

Assigned Tuesday

 $\underline{5.3}$ #79-82 all - applying concept of same reference angle $\underline{5.4}$

#1-7 odd - determining quadrant/location of angles in radians #9-19 odd - compliment/supplement/coterminal angles #21,23,27,31,45,47,53 - convert between radians and degrees

Next time:

- determine trigonometric function value of angles given in radians
- arc length/linear speed/angular speed problems