Turn in Homework #2:

Friday - 5.1#83-97 odd

Monday - 5.3 #29-37 odd, 39-70 all

Tuesday - 5.3 #79-82 all; 5.4 #1-23 odd,27,31,45,47,53

Wednesday - 5.5 #7-24 all

3. 45° -1 52

Review:

Evaluate the following:

$$2. \tan \frac{11\pi}{6}$$

5.
$$\cos \frac{2\pi}{3} = \frac{1}{2}$$

$$3. \csc \frac{5\pi}{4} = \sqrt{2}$$

6.
$$\cos 53\pi = 1$$

Homework questions?

Linear Speed

$$v = \frac{S}{t}$$

Angular Speed

$$\omega = \frac{\theta}{t}$$

Arc Length

$$s = r\theta$$

Relating Linear & Angular Speed

 $r = \underline{\text{radius}}$ or distance from the center of rotation (in, cm, km, etc.)

s =arc length or linear distance along the circumference of a circle (in, cm, km, etc.)

 $\theta = \underline{\text{angle}}$ or amount of rotation (deg, rad, revolutions, etc.)

t = time

(sec, min, hours, years, etc.)

$$v = \frac{\text{linear distance}}{\text{time}} = \underline{\text{linear speed}}$$

$$\left(\frac{km}{s}, \frac{mi}{h}, etc.\right)$$

$$\omega = \frac{\text{amount of rotation}}{\text{time}} = \frac{\text{angular speed}}{\text{angular speed}}$$

$$\left(\frac{rev}{min}, \frac{deg}{s}, etc.\right)$$

2. An earth satellite in circular orbit 1200 km high makes one complete revolution every 90 minutes. What is its linear speed in km/min, given that the earth's radius is 6400 km?

W=
$$\frac{|rev|}{q_0 \text{ min}}$$
 $V = \frac{|rev|}{q_0 \text{ min}}$
 $V = \frac{|rev|}{q_0 \text{ min}}$

3. Through how many radians does the minute hand of a clock rotate from 12:45pm to 1:25pm?

$$\theta = \frac{? \text{ rad }; t = 40 \text{ min }; \omega = \frac{1 \text{ rev}}{h}$$

$$t \cdot \omega = \frac{\theta}{t} \cdot t$$

$$\theta = \omega t = \frac{1 \text{ rev}}{h} \cdot \frac{40 \text{ min }}{h} \cdot \frac{2\pi}{1 \text{ rev}}$$

$$= \frac{4\pi}{3}$$

4. A car travels at 60 miles per hour. Its wheels have a 24 inch diameter. What is the angular speed of a point on the rim of a wheel in revolutions per minute?

$$V = 60 \text{ migh}, \Gamma = 12 \text{ in}, W = ? \text{ rev/min}$$

$$V = \frac{KW}{\Gamma} \qquad W = \frac{V}{\Gamma} = \frac{V}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{60 \text{ min}}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{60 \text{ min}}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

$$W = \frac{1}{\Gamma} \cdot \frac{1}{\Gamma}$$

Homework:

Five problems on handout and 5.4#61-79odd