

7. Write the following in terms of $\sin 38^{\circ}$ and $\cos 38^{\circ}$.

8. The angle of depression from the top of a cliff to an object on the ground is 30°. If the object is 250 feet from the base of the cliff, how tall is the cliff? Give an exact answer in feet.

9. A child rides his tricycle at a rate of 20 miles per hour. If the diameter of the front wheel is 8 inches, find the angular speed of the wheel in revolutions per minute. Give an exact answer, in terms of π if necessary.

$$V = \frac{20 \text{ min}}{h}, r = 4 \text{ in}, \omega = \frac{20 \text{ min}}{min}$$

$$V = \frac{1}{K} \qquad \omega = \frac{1}{K} = \frac{20 \text{ min}}{4 \text{ in}}$$

$$\omega = \frac{20 \text{ min}}{K} = \frac{1}{1 \text{ sair}} = \frac{1}{1 \text{ st}} =$$

10. Find the exact measure in inches of the radius of a circle with a central angle of 72° that subtends an arc of length 8 feet.

$$r = ? \text{ in } , \theta = 72° ; S = 8 \text{ ft}$$

$$S = r \theta$$

$$O = \frac{894}{134} \cdot \frac{12 \text{ in}}{134} \cdot \frac{180}{11} = \frac{240}{11} \text{ in}$$

- 5. Given that the terminal side of an angle β passes through the point (-2,4),
 - a. Draw a picture depicting the reference triangle with accurately labeled sides.

b. Find the length of the hypotenuse. (simplify all radicals)

$$h^{2} = (4)^{2} + (-2)^{2}$$

$$= 16 + 4 = 20$$

$$h = \sqrt{20} = 2\sqrt{5}$$

c. Evaluate $\cot \beta$.

d. Evaluate $\csc \beta$.

e. Evaluate $\cos \beta$.

Formulas to know for Test #1:

Trig Functions of an Acute Angle

$$\sin \theta = \frac{\text{side opposite } \theta}{\text{hypotenuse}} \qquad \qquad \csc \theta = \frac{\text{hypotenuse}}{\text{side opposite } \theta}$$

$$\cos\theta = \frac{\textit{side adjacent to }\theta}{\textit{hypotenuse}} \qquad \qquad \sec\theta = \frac{\textit{hypotenuse}}{\textit{side adjacent to }\theta}$$

$$\tan\theta = \frac{\mathit{side\ opposite}\ \theta}{\mathit{side\ adjacent\ to}\ \theta} \qquad \qquad \cot\theta = \frac{\mathit{side\ adjacent\ to}\ \theta}{\mathit{side\ opposite}\ \theta}$$

Converting Between Degree & Radian Measure

To convert from degree to radian measure, multiply by $\frac{\pi}{180^{\circ}}$

To convert from radian to degree measure, multiply by $\frac{180^{\circ}}{\pi}$

hypotenuse

Arc Length and Angular Speed

Variables

s = distance traveled or arc length (inches, kilometers, etc)

 $t = time \ (seconds, minutes, hours, days, etc)$

 $\theta = amount\ of\ rotation\ or\ included\ angle\ (degrees, radians, rotations, revolv$

r = radius or distance from the center of rotation (centimeters, inches, etc)

distance v = linear speed = time

$$\omega = angular speed = \frac{time}{amount of \ rotation}$$
$$time$$

Formulas

$$s = r\theta$$
, $v = \frac{s}{t}$, $\omega = \frac{\theta}{t}$, $v = r\omega$

Dimensional analysis conversion factors

$$\frac{5280\,ft}{1\,mi}\,,\frac{12\,in}{1\,ft}\,,\frac{2\pi}{1\,rev}\,,\frac{\pi}{180^\circ}\,,\frac{60\,min}{1\,hr}\,,\frac{60\,sec}{1\,min}\,,and\,their\,reciprocals$$

Trig Identities

Reciprocal Identities

$$\csc x = \frac{1}{\sin x}$$
 , $\sin x = \frac{1}{\csc x}$, $\sec x = \frac{1}{\cos x}$, $\cos x = \frac{1}{\sec x}$, $\cot x = \frac{1}{\tan x}$, $\tan x = \frac{1}{\cot x}$

Ratio Identities

$$\tan x = \frac{\sin x}{\cos x} , \cot x = \frac{\cos x}{\sin x}$$

Key words:

cofunction complement coterminal reference angle heading bearing angle of elevation/depression