Trigonometry Graphing Guide
By: THE BEST GROUP (Megan, Faith, \& Tommy ©)

	Sine	Cosecant	Cosine	Secant	Tangent	Cotangent
Period	2π	2π	2π	2π	π	π
Asymptotes (if any)	n / a	Where sine is 0	n / a	Where cosine is 0	Half periods of π	intervals of π (including $0)$

For a Trigonometric function in the form $y=a f[b(x+c / b)]+d$

$\mathrm{Y}=3 \sin \mathrm{x}$ amplitude
$\mathrm{Y}=\sin 2 \mathrm{x}$ peliod
$\mathrm{Y}=\sin (\mathrm{x}+\pi / 2)$ hor 2 . shift
$Y=\sin x+1$ Vert shift
Amplitude $=|a|$ (a is always positive) *If there is a negative sign $(-)$ in front of a, then you need to flip the graph
Period= original period of the function (π or $2 \pi) /|\mathrm{b}|$ *the original period of the graph is divided by the coefficient of the X

Horizontal shift - the number added or subtracted to the x (positive values move it to the left, negative values to the right) *if there is a period modifier (a b) then you also must divide the horizontal shift value by that value Vertical shift - the number added or subtracted to the end of a function (positive numbers make it go up that amount, negative amounts make it go down by that amount)

how to find the trig tuilction of a glue angle
3.

1 Fright ex fond the angle antre maps
Find the le filum $0=360-300$
Findoude lengths basel

Dh
 $\tan 300^{\circ}=\frac{8}{4}=\frac{\sqrt{3}}{1}=[-\sqrt{3}$
how to convert to radians degree to radians

$$
\frac{x^{\circ}}{1} \cdot \frac{\pi}{180^{\circ}}
$$

radians no dighé

$$
x \pi \cdot \frac{190^{\circ}}{\pi}
$$

Deja Manzw-Parker
Basic Tugonometric Functions/Unit Circle
$\frac{\pi}{3}=60^{\circ}$ reference angle
$\frac{\pi}{\pi^{6}}=30^{\circ}$ reference angle
$\frac{\pi}{4}=45^{\circ}$ reference angle

H - hypotenuse

O- opposite
A- adjacent.

$$
\begin{aligned}
& \sin \theta=\frac{O}{H} \quad \cos \theta=\frac{A}{H} \quad \tan \theta=\frac{O}{A}=\frac{\sin \theta}{\cos \theta} \\
& \csc \theta=\frac{1}{\sin \theta}=\frac{H}{O} \quad \sec \theta=\frac{1}{\cos \theta}=\frac{H}{A} \\
& \cot \theta=\frac{1}{\tan \theta}=\frac{A}{O}=\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

Examples:
opposite
the angl hypotenuse

Refer to Section 5.3 -Trigonometric Functions of Any Angle for Nest Portion Below

The reference angle is the acute angle (between 0° and 90°) between the terminal side of the angle end the x-axis.

Symbols to implicate reference angle:
α alpha β beta co onega θ theta

$$
\alpha=\text { some angle }
$$

\#ivinknown

*HI = hypotenuse is always positive
$* O$ \& $A=$ are legs of the Hight triangle and can be positive or negative depending on the quadrant they are lated in

Sine $_{d}$
Cosecant
Tangent
a Cotang
int

Law of Sines
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
<circle>Formul a used for AAS triangles or ASS triangles
Derivative

$$
\begin{gathered}
\sin B=\frac{h}{a} \\
\quad h=a \sin B \quad \begin{array}{l}
\sin A=\frac{h}{b} \\
\quad a \sin B=b \sin A
\end{array} \\
\frac{a}{\sin A}=\frac{b}{\sin B} \\
\frac{b}{\sin C}=\frac{b}{\sin B} \quad \frac{c}{\sin C}=\frac{a}{\sin A}
\end{gathered}
$$

* $h=$ the length of the altitude

Example of $A A S$ triangle
Solve $\triangle A B C$ if $A=42^{\circ}, B=63^{\circ}$, and $c=18$
1.

$$
\begin{aligned}
A+B+C & =180^{\circ} \\
42^{\circ}+63^{\circ}+C & =180^{\circ} \\
C & =75^{\circ}
\end{aligned}
$$

2. $\frac{a}{\sin A}=\frac{c}{\sin C}$

$$
\begin{aligned}
& \frac{a}{\sin 42^{\circ}}=\frac{18}{\sin 75^{\circ}} \\
& a=\frac{18 \sin 42^{\circ}}{\sin 75^{\circ}} \approx 12
\end{aligned}
$$

3. $\frac{b}{\sin B}=\frac{c}{\sin C}$

$$
\begin{aligned}
& \frac{b}{\sin 63^{\circ}}=\frac{18}{\sin 75^{\circ}} \\
& b=\frac{18 \sin 63^{\circ}}{\sin 75^{\circ}} \approx 17
\end{aligned}
$$

Solution is $c=75^{\circ}, a \approx 12$, and $b \approx 17$.

ASS, The Problematic Triangle
There may be 0,1 , or 2 solutions:

1. $a<h$; there is no possible triangle.

2 2 $a=h$, there is one triangle, a right triangle.
3. $h<a<c$; there are two possible triangles. One hos all acute angles, and the other has one obtuse angle.
$4 a \geq c_{i}$ there is ane triangle, which is not a right triangle.
1.

Case 2- $\angle A$ is an obtuse angle.

1. $a \leq c$; there is no triangle.
2. a $>_{B} \mathrm{C}$; there is one triangle.
3.

Example of Ass Triangle
a. Find A, given $\triangle A B C$ with $B=32^{\circ}, a=42$, and $b=30$.

$$
\begin{aligned}
& \frac{\sin B}{b}=\frac{\sin A}{a} \\
& \frac{\sin A}{42}=\frac{\sin 32^{\circ}}{30} \\
& A=\sin ^{-1}\left(\frac{42 \sin 32^{\circ}}{30}\right) \approx 0.7419 \\
& A \approx 48^{\circ} \text { or } 132^{\circ}
\end{aligned}
$$

b. Find $R C$, given $\triangle A B C$ with $A=57^{\circ}, a=15 \mathrm{ft}$, and $c=20 \mathrm{ft}$

$$
\begin{aligned}
& \frac{\sin C}{20 \mathrm{ft}}=\frac{\sin 57}{15 \sqrt{4}} \\
& C=\sin ^{-1}\left(\frac{20 \sin 57^{\circ}}{15}\right) \approx \sin ^{-1}(1.1182)=\text { no solution }
\end{aligned}
$$

For more problems, go to p. 541

Law of Cosines

$$
\begin{array}{ll}
a^{2}=b^{2}+c^{2}-2 b c(\cos A) \\
b^{2}=a^{2}+c^{2}-2 a c(\cos B) & \leftarrow \\
c^{2}=a^{2}+b^{2}-2 a b(\cos C) & \text { Formula used for SAS }
\end{array}
$$

Derivative

$$
\begin{aligned}
& c=\sqrt{(a \cos C-b)^{2}+(a \sin C-0)^{2}} \\
& c^{2}=a^{2} \cos ^{2} C-2 a b \cos C+b^{2}+a^{2} \sin ^{2} C \\
& c^{2}=a^{2}\left(\cos ^{2} C+\sin ^{2} C\right)+b^{2}-2 a b \cos C \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Triangle inequality

$$
\begin{aligned}
& a<b+c \\
& b<a+c \\
& c<a+b
\end{aligned} \quad \longleftarrow \text { for all triangles }
$$

Example of SAS triangle
Find, b, given $B=110.0^{\circ}, a=10.0$ centimeters, and $c-15.0$ centimeters.

$$
b^{2}=a^{2}+c^{2}-2 a c(\cos B)
$$

$$
b^{2}=(10)^{2}+(15)^{2}-2(10)(15) \cos 110^{\circ}
$$

$$
b=\sqrt{(10)^{2}+(15)^{2}-2(10)(15) \cos 110^{\circ}}
$$

$b \approx 20.7$ centimeters

Example of SSS Triangle
Find B_{5}, given $a=32 \mathrm{ft}, b=20 \mathrm{ft}$, and $c=40 \mathrm{ft}$

$$
\left.\begin{array}{rl}
b^{2} & =a^{2}+c^{2}-2 a c(\cos B) \\
\cos B & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
\cos B & =\frac{(32)^{2}+(40)^{2}-(20)^{2}}{2(32)(40)} \\
B & =\cos ^{-1\left(\frac{\left.(32)^{2}\right)}{}+(40)^{2}-(20)^{2}\right.} \\
2(32)(40)
\end{array}\right)
$$

Area of a Triangle $A=\frac{1}{2} b h$
\longleftarrow used only for SAS triangles
$h=b a \sin A / a b \sin C / a c \sin B$

$$
\begin{aligned}
& K=\frac{1}{2} \quad b c \sin A \\
& K=\frac{1}{2} a b \sin C \\
& K=\frac{1}{2} a c \sin B
\end{aligned}
$$

Example of Finding the Area of an SAS Triangle Given $A=62^{\circ}, b=12$ meters, and $c=5$ meters, find the area. $k=\frac{1}{2} b c \sin A=\frac{1}{2}(12)(5)\left(\sin 62^{\circ}\right) \approx 26 \mathrm{~m}^{2}$

Heron's Formula
$K=\sqrt{s(s-a)(s-b)(s-c)}$ used only for SSS triangles $s=\frac{1}{2}(a+b+c)$

Example of Finding the Area of an SSS Triangle
Given $a=7$ meters, $b=15$ meters, and $c=12$ moters, find the area.

$$
\begin{aligned}
& s=\frac{a+b+c}{2}=5 \\
& K=\sqrt{17(17-7)(17-15)(17-12)} \\
& K=\sqrt{1700} \approx 41 \text { meters }^{2}
\end{aligned}
$$

For more problems, go to p. 550-551

Evaluating Inverse Functions
Restricted Domains:

Sin, Csc, tan
Inverse must be between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

If $\sin ^{-1}, \csc ^{-1}$ or $\tan ^{-1}$ is in the third quadrant, the angle must not be written in a form which exceeds栏. For example: if the angle is $\frac{11 \pi}{6}$, it must be written as $-\frac{\pi}{6}$.

cos, sec, cot
Inverse mist be between 0 and T

If a function is multiplied by the inverse of that function, and that angle is in the restricted domain, then the function and the inverse cancel out. Thus,

$$
\sin ^{-1}\left(\sin \frac{\pi}{6}\right)=\frac{\pi}{6}
$$ the solution is the original angle.

$$
\sin ^{-1}\left(\sin \frac{7 \pi}{6}\right) \neq \frac{7 \pi}{6}
$$

$$
\csc ^{-1}\left(\sin \frac{\pi}{6}\right) \neq \frac{\pi}{6}
$$

Evaluating Trig. Identities
I) Identities that Involve $(\alpha \pm \beta)$

- Identities to know: Sum + Difference Identities
$\operatorname{Pg} 484$
- Find the exact value of the expression.

Step 1: Check that you y rote down the formula correctly, Step 7: Expand the Identify.
Step 3: Solve for Step 4: Multiply Step 5: Check for common denominator Step 6: Add
(13)

$$
\begin{aligned}
& \cos 2122^{\circ} \cos 127^{\circ}+\sin 212^{\circ} \sin 122^{\circ} \\
& \begin{array}{ll}
=\cos \left(212^{\circ}-122^{\circ}\right. & \frac{1212}{122} \\
=\cos 90^{\circ}
\end{array} \\
& \text { * } 212^{\circ}+122^{\circ} \\
& \text { lore not going } \\
& =0 \\
& \text { perfect } 1 \text {. }
\end{aligned}
$$

- Write in terms of a single trig. function.

$$
\text { (19) } \begin{aligned}
& \sin 7 x \cos 2 x-\cos 7 x \sin 2 x \\
= & \sin (7 x-2 x) \\
= & =\sin 5 x)
\end{aligned}
$$

Step 1: Did you copy. Correctly? Step 21: What's the identity?
Step 3: Simp Step 3: Simplify
(29) $\frac{\tan 3 x+\tan 4 x}{1-\tan 3 x \tan 4 x} \rightarrow \tan (3 x+4 x) \rightarrow \tan 7 x$

$$
1-\tan 3 x \tan 4 x
$$

Pg 484 - Find the exact value of the given functions.
(31) Given $\tan \alpha=-4 / 3, \alpha$ in Q II, and $\tan \beta=15 / 8$, β in Q II, find
a) $\sin (\alpha-\beta)$
b) $\cos (\alpha+\bar{\beta})$
c) $\tan (\alpha-\beta)$

b) $\cos (\alpha+\beta)$

$$
\begin{gathered}
\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
(3 / 5)(-8 / 17)-(-4 / 5)^{(15 / 17)} \\
(24 / 85)-60 / 85) \\
=\frac{-36}{85}
\end{gathered}
$$

Don Yon c) $\tan (\alpha-\beta) \rightarrow \frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}$

Step 1: Solve for the \triangle using the given.
Step 7: Expand the step unction.
Step 3: Find the sin
${ }_{4}+\cos$ for each.
Step 4: Multiply
Step 5: Check for Common denominators Step 6: Add
II) Double + Half-Angle Identities

- Write in terms of a single trig. function
$\begin{array}{r}\lg 491 \\ \hline \text { (1) }\end{array}$
(1)

$$
\begin{aligned}
& 2 \sin 2 \alpha \cos 2 \alpha \\
& =\sin 2 \alpha \cos 2 \alpha+\sin 2 \alpha \cos 2 \alpha \\
& =\sin (2 \alpha+2 \alpha) \\
& =\sin 4 \alpha
\end{aligned}
$$

(3)

$$
\begin{aligned}
& 1-2 \sin ^{2} 5 \beta \\
& =\cos ^{2} 5 \beta-\sin ^{2} 5 \beta \\
& =\cos 2(5 \beta) \\
& =\cos D \beta
\end{aligned}
$$

- Use the half-angle identities to find the exact value.
(9)

$$
\begin{aligned}
& \sin 75^{\circ} \times 2 \rightarrow \sin 150 \\
& = \pm \sqrt{\frac{1-\cos (150)}{2}} \cdot \frac{12}{2} \\
& =\sqrt{\frac{1-(-3 / 2)}{2}} \\
& =\frac{\sqrt{3}}{\frac{2}{2}+\sqrt{3 / 2}} \\
& =\frac{\sqrt{\frac{2}{2}}}{\frac{2+\sqrt{3}}{2}} \\
& =\frac{\sqrt{2}}{\sqrt{2}} \cdot \frac{2 \sqrt{6}}{1} \\
& \frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
=(+2 \sqrt{3}
$$

Step 1: Did you copy
the problem correctly:
Step 2: Expand
Step 3: Substitute Trig. Identities
(33)

$$
\begin{aligned}
& \cos \pi / 12 \times 2 \rightarrow \cos \pi / 6 \\
& =\frac{\sqrt{1+\cos (\pi)}}{2}-\frac{\sqrt{2 / 1}}{2} \\
& =\frac{\sqrt{\sqrt{3}} / 2+\sqrt{3} / 2}{\sqrt{2}}+\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{\sqrt{12+\sqrt{3}}}{2}
\end{aligned}
$$

- Find the exact value of $\sin 2 \theta, \cos 2 \theta$, and $\tan 2 \theta$ given the following information
(25)

the angle.
Step 2: Expand Identity Step 3: Apply Solved 1 to Equation Step 4: Multiply
b) $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$

$$
\begin{aligned}
& \frac{2\left(\frac{3}{-4}\right) \div 1-\left(\frac{3}{-4}\right)\left(\frac{3}{-4}\right)}{3} \div 16 \\
& -2 \div \frac{9}{16}\left(\frac{16}{16}\right) \\
& \frac{3}{-2} \cdot \frac{16}{7} \rightarrow \frac{48}{-14} \rightarrow \frac{-24}{7}
\end{aligned}
$$

c) $\cos 2 \theta$
an You
201 ?

Team Sauce Drip Drippin Saucy Sauce

By: Sir Saucy, Honey Mustard, Madam Dripper-Sauce, and Lil Drip with the Skip

Arc Length
 Angular Speed

Proper steps to solve:

1. Identify given (sort variables)
2. Determine which equation to use
3. Rearrange equation to solve for variable
4. Plug in quantities (check for units)
5. Use dimensional analysis to get to proper units

Examples

Look on brewermath.com November 7, 2016

Angular Speed (Section 5.1)

1. A wheel is rotating at 50 revolutions per minute. Find the angular speed in radians per second.
2. Find the angular speed, in radians per second hand on a clock.
3. The turntable of a record player turns at 33 (1/3) revolutions per minute. Find the angular speed in radians per second.

Linear Speed (Section 5.1)

1. Each car tire has a radius of 15 inches. The tires are rotating at 450 rev per minute. Find the speed of the automobile to the nearest mph.
2. Wind machine is used to generate electricity. The machine has propeller blades that are 12 ft . in length. If the propeller is rotating at 3 rev per second what is the linear speed in ft per second of the tips of the blades?
3. A wheel with a 15 inch diameter rotates at a rate of 6 radians per second. What is the linear speed of a point on its rim in feet per minute?

Distance and Angular Speed

A merry-go-round horse is 11.6 meters from the center. the merry go round makes $141 / 4$ rev per ride in 5 min.
a. How many meters to the nearest meter does the horse travel?
b. How fast is it moving in meters per second?

Arc Length

What is the length of arc S ?

