4.1 Inverse Functions

Recall:

f is a <u>function</u> if each input value (x) has exactly one output f(x)

Functions pass the vertical line test.

f is a <u>one-to-one function</u> if, in addition, each y corresponds to only one x.

One-to-one functions pass both the horizontal line test and the vertical line test.

Formally, a function is one-to-one if different inputs have the same outputs i.e

if $a \neq b$, then $f(a) \neq f(b)$,

Or equivalently, f is one-to-one if when the outputs are the same, the inputs are the same, i.e.

if f(a) = f(b), then a = b.

Proving that a function *is* one-to-one v. proving that a function *is* not one-to-one (problems 17-24 from section 4.1)

To show that f(x) is <u>not</u> one-to-one, it is enough to provide a single counter-example, i.e. 2 different inputs that yield the same output

$$f(x) = x^{2} - 5$$

$$f(1) = (1)^{2} - 5 = 1 - 5 - 4$$

$$f(-1) = (-1)^{2} - 5 = 1 - 5 = -4$$
Since $f(i) = f(-i)$, $f(1) = 1 - 1$

To show that f(x) is one-to-one, we must prove it in general.

$$f(x) = -2x^{3} + |$$

$$f(a) = f(b)$$

$$-2a^{3} + | = -2b^{3} + |$$

$$-2a^{3} = -2b^{3}$$

$$-$$

Since
$$f(a) = f(b)$$
implies that
$$a = b,$$

$$f(b) = f(b)$$

$$a = b$$

$$f(b) = f(b)$$

$$f(b) =$$

If a function is one-to-one, then it has an inverse.

Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse function.

$$f(x) = \{(1,2), (3,4), (5,6), (7,8)\}$$

 $f'(x) = \{(2,1), (4,3), (6,5), (8,7)\}$

If a relation is defined by an equation, interchanging the variables produces an equation of the inverse relation.

$$y = -2x^3 + 1$$

 $X = -2y^3 + 1$

The domain of a one-to-one function f is the range of the inverse f^{-1} .

The range of a one-to-one function f is the domain of the inverse f^{-1} .

Obtaining the formula for an inverse:

- 1. Replace f(x) with y
- 2. Interchange x and y
- 3. Solve for y
- 4. Replace y with $f^{-1}(x)$

$$f^{-1}(x) = \sqrt[3]{\frac{x-1}{x-2}}$$

$$f(x) = -2x^{3} + 1$$

$$y = -2x^{3} + 1$$

$$x = -2y^{3} + 1$$

$$x = -2y^{3} + 1$$

$$x - 1 = -2y^{3}$$

$$\frac{x - 1}{-2} = y$$

$$\frac{x - 1}{-2} = y$$

The graph of f^{-1} is a reflection of the graph of f across the line y = x

If
$$f \& g$$
 are inverses, then

 $(f \circ g)(x) = x$ for all x in the domain of g
 $(g \circ f)(x) = x$ for all x in the domain of f

86.
$$f(x) = 3\sqrt{x+4}$$
; $f^{-1}(x) = x^3 - 4$
use composition to show f^{-1} is as given.
 $(f \circ f^{-1})(x) = 3\sqrt{x^3 + 4} + 4 = 3\sqrt{x^3} = x$

$$(f^{-1} \circ f)(x) = (3\sqrt{x+4})^3 - 4 = x+4-4 = x$$

88.
$$f(x) = \frac{x+6}{3x-4} \rightarrow f^{-1}(x) = \frac{4x+6}{3x-1}$$

$$(f \circ f^{-1})(x) = (\frac{4x+6}{3x-1}) + 6$$

$$3(\frac{4x+6}{3x-1}) - 4$$

$$= \frac{4x+6+18x-6}{3x-1}$$

$$= \frac{4x+6+18x-6}{3x-1} = \frac{22x}{3x-1} \rightarrow \frac{3(4x+6)}{3x-1} = x$$

$$(f' \circ f)(x) = \frac{4(\frac{x+6}{3x-4})+6}{3(\frac{x+6}{3x-4})-1} = \frac{4(x+6)+6}{3x-4} \rightarrow \frac{3(x+6)+6}{3x-4} = \frac{4(x+6)+6}{3x-4} = \frac{4(x+6)+6}{3x-4} = \frac{4(x+6)+6}{3x-4} = \frac{4(x+6)+6}{3x-4} = \frac{22x}{3x-4} \rightarrow \frac{3(x+6)+6}{3x-4} = \frac{22x}{3x-4} \rightarrow \frac{3(x+6)+6}{3x-4} = \frac{22x}{3x-4} \rightarrow \frac{3(x+6)+6}{3x-4} = x$$

4.2 Exponential Functions
$$f(x) = a^{x} \qquad a>0 \qquad \text{excludes (-1)}^{2}$$
base exponent $a\neq 1$ excludes $a\neq 1$ excludes $a\neq 1$

Note: the variable is in the exponent, unlike power functions/polynomials

$$f(x) = x^{2}$$

$$f(x) = x^{2}$$

$$f(x) = 2^{x}$$

$$f(x) = exp.$$

Homework #7

<u>3.7</u>	#23-37 odd	variation and applications	
4.1	#17-23 odd #59-63 odd #77-81 odd #83-87 odd	prove f is one-to-one; prove g is not one-to-one determine if f is on-to-one and if so, determine its inverse sketch the inverse function by reflecting over y=x use composition to show that the functions are inverses	
<u>4.2</u>	#5-10all #11-41odd sk #43a,b,c,45,47	match an exponential function to its graph etch graphs of exponential functions using transformations compound interest word problems	3
4.3	#1-8all #9-33odd #35-53 odd #69-77 odd #83-90 all	sketch graphs of logarithmic functions evaluate log expressions <u>without</u> a calculator convert between logarithmic and exponential expressions apply change of base formula & calculator to approximate log expressions graph logarithmic functions using transformations	