1.
$$\log_9\left(\frac{1}{3}\right) = \frac{\log_3\frac{1}{3}}{\log_39} = \boxed{\frac{-1}{2}}$$
 ; $\log_9\sqrt{\frac{1}{9}} = \log_9\sqrt{\frac{1}{9}} = \log_9\sqrt{\frac{1}{9}} = \frac{1}{2}$

3.
$$\log_8 32 = \frac{\log_2 32}{\log_2 8} = \frac{5}{3}$$

4.
$$\log_{27} 3 = \boxed{1}$$

$$= \log_{3} 3$$

$$= \log_{3} 27$$
5. $\ln \sqrt[3]{e} = \ln e^{1/3} = \log_{10} e^{1/3}$

5.
$$\ln \sqrt[3]{e} = \ln e^{1/3} = \log_e e^{1/3} = 1/3$$

6.
$$2^{\log_2(6)} = 6$$

8.
$$\log_{4}(x+5) + \log_{4}(x-3) - \log_{4}(x) = 2$$

$$\log_{4}\left(\frac{(x+5)(x-3)}{x}\right) = 2 \qquad \log_{4}(x+5) = 2$$

$$4^{2} = \frac{(x+5)(x-3)}{x} \qquad 0 = x^{2} + 2x - 15$$

$$16 = \frac{x^{2} + 2x - 15}{x} \qquad 0 = (x+5)(x+1)$$

$$x = (5); \qquad x$$
9. $4^{5x+2} = \frac{1}{64}$

$$\ln 4^{(5x+2)} = \ln 64$$

$$5x + 2 \ln 4 = \ln 64$$

$$5x + 2 \ln 64$$

$$6x + 3 \ln 6$$

$$P(t)$$
 = amount at time t
 P_0 = initial amount = $P(0)$
 $P_0 \approx 2.7$

Doubling time = T such that P(T) = 2Po
(ant of time it takes the amount to dall)

$$2P = Pe^{K.T}$$

Determine the exponential growth constant of a population whose doubling time is 5 years and initial population is 2,000,000 individuals.

years and initial population is 2,000,000 individuals.

$$K = ?$$
 $P_0 = 2,000,000$
 $Q = P_0 =$

$$5 = T$$
 such that $P(T) = 2P_0$ $P(5) = 4,000,000$

What was the initial investment into an account with a 6.5% interest rate if the amount in the account after 8 years is \$32,000?

In2 = K.5

$$P(t) = P_0 e^{Kt}$$
 $32000 = P_0 (0.065)8$

$$P_0 = \frac{32,000}{e^{0.065(5)}}$$

What is the half-life in years of an element that has lost 90% of its mass after 700 years?

THURSDAY:

RE-TEST ON LOGS AND EXPONENTS

RECOMMENDED PRACTICE:

- SOLVING LOGARITHMIC AND EXPONENTIAL EQUATIONS (4.5 IN GREEN BOOK)
- SOLVING APPLICATION PROBLEMS (4.6 IN GREEN BOOK)