

$$\Delta x$$
 "delta x"

 $f(x+\Delta x)-f(x)=f(x+h)-f(x)$
 Δx
 Δx

$$\frac{1.2}{f(x) = x-2}, x \neq 2, -2$$

What happens to f(x) as x approaches 2?

X	1.9	1.99	1.999	2	2.001	2.01	2.1
	0	0,	_				0.
f(x)	35	So	0.250	 	ئے کے	79	. ج ^{کے}
	**	6	0	!	^9 ₀	Z	39
fc) vaca							
$f(x) \rightarrow 0.25$ as $x \rightarrow 2$							

Informal Description of the Limit

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the <u>limit</u> of f(x), as x approaches c, is L.

$$\lim_{x\to c} f(x) = L$$

<u>Note</u>: the existence or nonexistence of f(x) at x=c has no bearing on the existence of the limit as x approaches c.

A function can be undeined for a certain value of $\,c$ with the limit as x approaches $\,c$ still deined.

$$\lim_{x\to -3} \frac{\sqrt{1-x}-2}{x+3} = -0.25$$

$$f(x) = \begin{cases} 1, & x \neq -3 \\ 0, & x = -3 \end{cases}$$

$$f(x) = \begin{cases} 1, & x \neq -3 \end{cases}$$

$$f(x) = \begin{cases} 1, & x \neq -3 \end{cases}$$

$$f(x) = \begin{cases} 1, & x \neq -3 \end{cases}$$

$$f(x) = \begin{cases} 1, & x \neq -3 \end{cases}$$
The limit is not necessarily

The limit is not necessarily equal to the function value.

$$\lim_{x \to 0} \frac{|2x|}{x}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} \times 20 \end{cases}$$

$$|2x| = \begin{cases} \frac{2}{x} = 2 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}{x} \times 20 \\ -\frac{2}{x} = -2 \end{cases}$$

$$|x| = \begin{cases} \frac{2}$$

$$\lim_{x \to 3} \frac{|x-3|}{|x-3|} = \lim_{x \to 3} \frac{|x-3|}{|x-3|} =$$

"Dirichlet Function"

$$f(x) = 50$$
, if x is rational

 $f(x) = 1$, if x is irrational

Limit does not anywhere!

<u>Homework</u>:

1.2 #1-7odd,9-18all