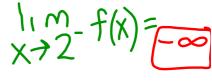
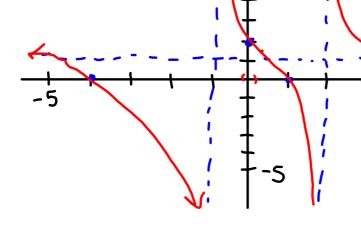
Graph the rational function.

$$f(x) = \frac{(x+4)(x-1)}{(x-2)(x+1)} = \frac{x^2}{x^2} = 1$$

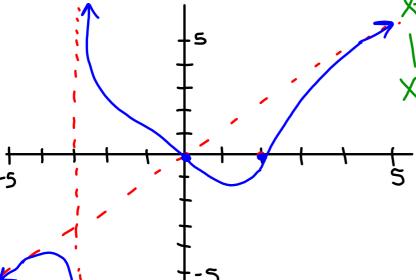
$$\lim_{x\to\infty}f(x)=[$$

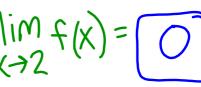




$$f(x) = \frac{x(x-2)}{x+3} = \frac{x^2}{x} = x \quad \lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x\to -3} f(x) = +\infty$$

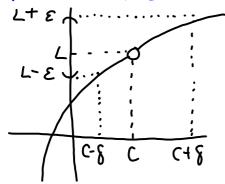




Building up to the $\epsilon - \delta$ Definition of the Limit

E=epsilon

Translating the "informal description": $\lim_{x\to c} f(x) = L$ for $x \to c$ approaches $x \to c$ from either side, the limit of $x \to c$ approaches $x \to c$ approaches $x \to c$ from either side, the limit of $x \to c$ approaches $x \to c$ from either side.



"f(x) becomes arbitrarily close to L"

f(x) lies in the interval $(L - \varepsilon, L + \varepsilon)$ for some (really small) $\varepsilon > 0$.

$$|f(x) - L| < \varepsilon$$

"the distance between f(x) and L is less than ε "

"x approaches c"

There exists a (very small) positive number δ such that x is either in the interval $(c - \delta, c)$ or $(c, c + \delta)$.

$$0 < |x - c| < \delta$$

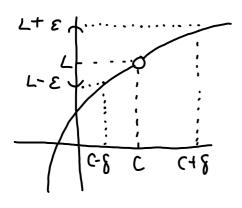
The first inequality guarantees that $x \neq c$.

$\varepsilon - \delta$ Definition of the Limit:

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement

$$\lim_{x \to c} f(x) = L$$

means that for each $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.



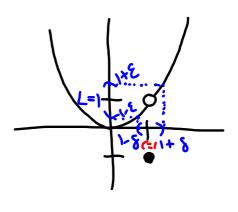
$\varepsilon - \delta$ Definition of the Limit:

 $\lim_{x\to c} f(x) = L$ if given $\varepsilon > 0$, there exists a $\delta > 0$ such that

 $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$.

$$f(x) = \begin{cases} x^2, & x \neq 1 \\ -1, & x = 1 \end{cases}$$

$$\lim_{x \to 1} f(x) = \boxed{1}$$



$\varepsilon - \delta$ Definition of the Limit:

 $\lim_{x\to c} f(x) = L$ if given $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - c| < \delta$.

$$f(x)=2x-1$$
 $\lim_{x\to 4} f(x)=2(4)-1=7$

Find $\lim_{x\to 1} f(x)$ and prove that is the limit using the E-S definition. L=7; C=4; f(x)=2x-1

$$L=7$$
; $C=4$; $f(x)=2x-1$

Let E>O be given.

$$|f(x)-L| = |2x-1-7| = |2x-8| = |2(x-4)|$$

= $2|x-4|$ We want $2|x-4| < \epsilon$

Let
$$\varepsilon > 0$$
 be given.
 $|f(x)-L| = |2x-1-7| = |2x-8| = |2(x-4)|$
 $= 2|x-4|$ We want $2|x-4| < \varepsilon$
 $|x-4| < \frac{\varepsilon}{2}|$
Take $S = \frac{\varepsilon}{2}$.
Then whenever $0 < |x-4| < \delta$, we have $|2x-1-7| = 2|x-4| < 2 \cdot \delta = 2 \cdot \frac{\varepsilon}{2} = \varepsilon$, i.e. $|f(x)-L| < \varepsilon$.

$\varepsilon - \delta$ Definition of the Limit:

 $\lim_{x\to c} f(x) = L$ if given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$.

$$f(x) = -5x+3$$
; find $\lim_{x \to 1} f(x) = 4$ find a δ .
 $\lim_{x \to 1} f(x) = -5(1)+3 = -2$
 $L = -2$; $C = |$
 $|f(x) - L| = |-5x+3 - (-2)| = |-5x+5| =$
 $= |-5(x-1)| = 5|x-1| < \epsilon$
 $|x-1| < \epsilon/5 = \delta$

Prove that the limit is L using the $\varepsilon - \delta$ definition of the limit. L = -1 $28. \lim_{x \to -3} (2x + 5) = 2(-3) + 5 = -1$ $|f(x) - L| = |2x + 5 - (-1)| = |2x + 6| = |2x + 6| = |2x + 3| = 2|x - (-3)| < \frac{\varepsilon}{2}$ $|x - (-3)| < \frac{\varepsilon}{2} = 5$ Proof:
Given $\varepsilon > 0$. Take $\varepsilon = \frac{\varepsilon}{2}$. Then

whenever $|x - (-3)| < \delta$, we have $|2x + 5 - (-1)| = 2|x - (-3)| < 2\delta = 2\frac{\varepsilon}{2} = 5$ i.e. $|f(x) - L| < \varepsilon$

Find δ for $\varepsilon = 0.01$

$$24.\lim_{x\to 4}\left(4-\frac{x}{2}\right)$$

Find
$$\delta$$
 for $\varepsilon = 0.01$

$$26.\lim_{x\to 5}(x^2+4)$$

Homework:

Already assigned: 1.2 #1-7odd,9-18all

New:

1.2 #23, 25, 27, 29, 30, 31 and watch all of the Khan Academy epsilon-delta videos!