The Derivative

The slope of the tangent line to the graph of f at the point (c, f(c)) is given by:

$$m = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

The derivative of f at x is given by

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

20.
$$f(x) = \chi^{3} + \chi^{2}$$

find the derivative

 $f(x) = \chi^{3} + \chi^{2}$
 $f(x) = \chi^{3} + \chi^{2}$
 $f(x) = \chi^{3} + \chi^{2}$
 $f(x+h) = (x+h)^{3} + (x+h)^{2}$
 $f(x) = \lim_{h \to 0} \frac{(x+h)^{3} + (x+h)^{2} - (x^{3} + \chi^{2})}{h}$
 $f(x) = \lim_{h \to 0} \frac{(x+h)^{3} + (x+h)^{2} - (x^{3} + \chi^{2})}{h}$
 $f(x) = \chi^{3} + \chi^{2}$
 $f(x+h) = (x+h)^{3} + (x+h)^{2}$
 $f(x) = \chi^{3} + \chi^{2}$
 $f(x+h) = (x+h)^{3} + (x+h)^{2}$
 $f(x) = \chi^{3} + \chi^{2}$
 $f(x+h) = \chi^{3} + \chi^$

2.1 Differentiability & Continuity

Alternative definition of the derivative at the point (c, f(c)):

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

All differentiable functions are continuous, but not all continuous functions are differentiable.

$$f(x) = |x + 3|$$

$$\lim_{x \to -3}$$

$$f(x) = \sqrt{x}$$

$$\lim_{X \to 0^{+}} \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \lim_{X \to 0^{+}} \frac{\sqrt{x}}{x}$$

$$= \lim_{X \to 0^{+}} \frac{x^{2}}{x^{2}} = \lim_{X \to 0^{+}} \frac{1}{x^{2}}$$

$$= \lim_{X \to 0^{+}} \frac{x^{2}}{x^{2}} = \lim_{X \to 0^{+}} \frac{1}{x^{2}}$$

$$= \lim_{X \to 0^{+}} \frac{1}{x^{2}} = \infty$$

$$= \lim_{$$

2.2 Basic Differentiation Rules

1. The <u>derivative of a constant function</u> is zero, i.e.,

for
$$c \in \mathbb{R}$$
, $\frac{d}{dx}[c] = 0$

Proof: $f(x) = C$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = \lim_{h \to 0} 0$$

$$= 0$$

$$\lim_{h \to 0} \frac{d}{dx}[7] = 0$$

$$327 \pi^{2} = 0$$

2. Power Rule for
$$n \in \mathbb{Q}$$
, $\frac{d}{dx}[x^n] = nx^{n-1}$

Proof: $f(x) = x$

Recall the binomial expansion:
$$n! = n(n-1) \cdot (n-2) \cdot ($$

Examples:

Examples:

$$\frac{d}{dx}[x^{7}] = 7x$$

$$\frac{d}{dx}[\pi^{3}] = 0$$

$$\frac{d}{dx}[2e] = 0$$

$$\frac{d}{dx}[\sqrt{x}] = \frac{d}{dx}[\sqrt{x}] = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

$$\frac{d}{dx}\left[\frac{1}{x^{3}}\right] = \frac{1}{2}x^{-3} = -3x^{-4} = -3x^{-4}$$

2.2 Basic Differentiation Rules

1. The derivative of a constant function is zero, i.e.,

for
$$c \in \mathbb{R}$$
, $\frac{d}{dx}[c] = 0$

- 2. <u>Power Rule</u> for $n \in \mathbb{Q}$, $\frac{d}{dx}[x^n] = nx^{n-1}$
- 3. Constant Multiple Rule $\in \mathbb{R}$, $\frac{d}{dx}[cf(x)] = cf'(x)$
- 4. Sum & Difference Rules $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$

Examples:

$$f(x) = 3x^{2}$$

$$f'(x) = 3 \cdot [x^{2}] = 3 \cdot 2x = 6x$$

$$f(x) = \frac{3}{x} = 3x^{-1}$$

$$f'(x) = 3 \cdot [x^{-1}] = 3 \cdot [-x^{-2}] = -3x^{-2}$$

$$g(x) = 2x^{3} - x^{2} + 3x$$

$$g'(x) = 6x^{2} - 2x + 3$$

$$y = 4x^{3/2} - 5x^{4} + 2x^{\frac{1}{3}} - 7$$

$$y' = 6x^{\frac{1}{2}} - 20x^{\frac{1}{3}} + \frac{2}{3}x^{\frac{1}{3}}$$

Derivatives of Trig Functions

- $1. \frac{d}{dx} [\sin x] = \cos x$
- $2.\frac{d}{dx}[\cos x] = -\sin x$
- $3. \frac{d}{dx} [\tan x] = \sec^2 x$
- $4. \frac{d}{dx} [\cot x] = -\csc^2 x$
- $5. \frac{d}{dx} [\sec x] = \sec x \tan x$
- $6. \frac{d}{dx} [\csc x] = -\csc x \cot x$

Proof that
$$(\sin x)' = \cos x$$
 $(\sin x)' = \lim_{h \to 0} \frac{\sin (x+h) - \sin x}{h}$
 $= \lim_{h \to 0} \frac{\sin x \cosh + \cos x \sinh - \sin x}{h}$
 $= \lim_{h \to 0} \frac{\cos x \sinh - \sin x \cosh h}{h}$
 $= \lim_{h \to 0} \frac{\cos x \sinh - \sin x \cosh h}{h}$
 $= \lim_{h \to 0} \frac{\cos x \sinh - \sin x \cosh h}{h}$
 $= \lim_{h \to 0} \frac{\cos x \sinh - \sin x \cosh h}{h}$
 $= \lim_{h \to 0} \frac{\cos x \sinh - \sin x \cosh h}{h}$

Homework #4:

Find the derivative by the limit process:

2.1 #1-23 odd

Use the alternate form to find the derivative:

2.1 #61-69 odd

Describe the x-values where the function is differentiable (given a graph): 2.1 #71-79 odd

Find the derivative using the basic derivative rules we have learned so far: 2.2 #3-51 odd

Work through intuitive exercises on **Khan Academy**:

- Slope of secant lines
- Tangent lope is limiting value of secant slope
- · Derivative intuition
- Visualizing derivatives
- Graphs of functions and their derivatives
- The formal and alternate form of the derivative
- Derivatives 1
- · Recognizing slopes of curves
- Power rule
- Special derivatives