Assignments for the Week of Sept 19:

- Read 2.3-2.4
- 45 minutes of Khan Academy
- Due Wed. 21 Sept:
 2.3 #1-53 odd; 63-85 odd; 91-105 odd; 111-115 odd

Upcoming:

- 2.4 #7-33 odd; 43-89 odd Chain rule
- 5.1 Logarithmic functions
- 5.4 Exponential functions
- 5.5 Log and exp functions with other bases
- 5.8 Inverse trig functions

Instantaneous rate of change of a function f(x) when x = c is f'(c) < -- slope of tangent line through a single point f(x) on the interval f(x) on the interval f(x) through a single point f(x) on the interval f(x) or the interval f(x) through two points

Given a position function $s(t) = gt^2 + v_0t + s_0$,

Since velocity is the rate of change of position,

The instantaneous velocity at time t = c is s'(c)

The average velocity on the interval [a, b] is $\frac{s(b)-s(a)}{b-a}$

The graph above shows velocity v versus time t for an object in linear motion. Which of the following is a possible graph of position x versus time t for this object?

Which of the following sets of graphs below might be the corresponding graphs of position, velocity, and acceleration vs time for a moving particle?

The graph above represents position x versus time t for an object being acted on by a constant force. The average speed during the interval between 1 s and 2 s is most nearly

- (A) 2 m/s
- (B) 4 m/s
- (C) 5 m/s
- (D) 6 m/s

Consider the motion of an object given by the position vs. time graph shown below. For what time(s) is the speed of the object greatest?

- (A) At all times from $t = 0.0 \text{ s} \rightarrow t = 2.0 \text{ s}$
- (B) At time t = 3.0 s
- (C) At time t = 4.0 s
- (D) At all times from $t = 5.0 \text{ s} \rightarrow t = 7.0 \text{ s}$
- (E) At time t = 8.5 s

2000B1 (modified) A 0.50 kg cart moves on a straight horizontal track. The graph of velocity v versus time t for the cart is given below.

