

as X approaches	f(x) approaches
-2	3
1 - (from the left)	
1 ⁺ (from the right)	1
3	0
-8	0
8	0
4	8

tangent lines

$$\frac{f(x+\Delta x)-f(x)}{\Delta x} = \frac{f(x+h)-f(x)}{h}$$
L treated as a single variable

$$f(x) = x-2
x^{2}-4$$
What happens to $f(x)$ as x approaches 2?

$$x = 1.9 = 1.99 = 1.999 = 2 = 2.001 = 2.01 = 2.1$$

$$f(x) = 2.001 = 2.01 = 2.1$$

$$f(x) = 2.001 = 2.01 = 2.1$$

$$f(x) = 2.001 = 2.01 = 2.1$$

Informal Description of the Limit

If f(x) becomes arbitrarily close to a single number L as x approaches c from either side, the limit of f(x), as x approaches c, is L.

$$\lim_{x\to c} f(x) = L$$

<u>Note</u>: the existence or nonexistence of f(x) at x=c has no bearing on the existence of the limit as x approaches c.

A function can be undefined for a certain value of c with the limit as x approaches c still defined.

$$\lim_{X \to -3} \frac{\sqrt{1-x} - 2}{x+3} = -0.25$$

$$f(x) = \begin{cases} 1, x \neq -3 \\ 0, x = -3 \end{cases}$$

$$\lim_{X\to -3} f(x) = 1$$

$$\lim_{x \to 3} \frac{|x-3|}{|x-3|} = \lim_{x \to 3} \frac{|x|}{|x-3|} = \lim_{x \to 3} \frac{|x|}{|x-3|} = \lim_{x \to 3} \frac{|x-3|}{|x-3|} = \lim_{x$$