Due Fri. 4/7:

 2.4 #7-33 odd; 43-89 odd Chain rule

• 5.1 #41-59 odd; 69,71 Logarithmic functions

Due Mon. 4/10:

5.4 #33-51 odd; 59, 61 **Exponential functions**

• 5.5 #37-69 odd Log and exp functions with other bases

• 5.6 #39-63 odd Inverse trig functions

TEST: Wed. 4/12?

Power Rule:

$$\frac{d}{dx}[x^n] = nx^{n-1} \qquad \qquad \text{d/dx} \ [c] = 0 \qquad \qquad \frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

Constant Multiple Rule: Quotient Rule:
$$\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)] \qquad \qquad \frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$
 Sum & Difference: Chair Rule:

Sum & Difference: Chain Rule:
$$\frac{d}{dx}[f(x)\pm g(x)] = f'(x)\pm g'(x)$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Trig Functions:

$$\frac{d}{dx}[\sin x] = \cos x \qquad \qquad \frac{d}{dx}[\tan x] = \sec^2 x \qquad \qquad \frac{d}{dx}[\sec x] = \sec x \tan x$$

$$\frac{d}{dx}[\cos x] = -\sin x \qquad \qquad \frac{d}{dx}[\cot x] = -\csc^2 x \qquad \qquad \frac{d}{dx}[\csc x] = -\csc x \cot x$$

Instantaneous rate of change of a function f(x) when x = c is f'(c) < -- slope of tangent line through a single point Average rate of change of a function f(x) on the interval [a,b] is $\frac{f(b)-f(a)}{b-a}$ <-- slope of secant line through two points

Given a position function $s(t) = gt^2 + v_0t + s_0$,

Since velocity is the rate of change of position,

The instantaneous velocity at time t = c is s'(c)

The average velocity on the interval [a, b] is $\frac{s(b)-s(a)}{b-a}$

The Derivative

The slope of the tangent line to the graph of fat the point (c, f(c)) is given by:

$$m = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x}$$

The derivative of f at x is given by

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

The graph above shows velocity v versus time t for an object in linear motion. Which of the following is a possible graph of position x versus time t for this object?

Which of the following sets of graphs below might be the corresponding graphs of position, velocity, and acceleration vs time for a moving particle?

The graph above represents position x versus time t for an object being acted on by a constant force. The average speed during the interval between 1 s and 2 s is most nearly

- (A) 2 m/s
- (B) 4 m/s
- (C) 5 m/s
- (D) 6 m/s

Consider the motion of an object given by the position vs. time graph shown below. For what time(s) is the speed of the object greatest?

- (A) At all times from $t = 0.0 \text{ s} \rightarrow t = 2.0 \text{ s}$
- (B) At time $t = 3.0 \, s$ $\left| -4 \right| = 4$
- (C) At time t = 4.0 s
- (D) At all times from $t = 5.0 \text{ s} \rightarrow t = 7.0 \text{ s}$
- (E) At time t = 8.5 s

2000B1 (modified) A 0.50 kg cart moves on a straight horizontal track. The graph of velocity v versus time t for the cart is given below.

d. On the axes below, sketch the acceleration a versus time t graph for the motion of the cart from t = 0 to t = 25 s

Find
$$y', y'', y''', y^{(4)}, y^{(5)}, \dots, y^{(n)}$$

$$y = 5x^{3} - 3x^{2} + 2$$

$$y' = 15x^{2} - 6x$$

$$y''' = 30x - 6$$

$$y''' = 30$$

$$y''' = 30$$

$$y(4) = 0$$

$$y(5) = 0$$

$$y(6) = 0$$

$$y = x^{6} + 2x^{5} - 3x^{4} + 2x - 5$$

$$y' = 6x^{5} + 10x^{4} - 12x^{3} + 2$$

$$y'' = 30x^{4} + 40x^{3} - 36x^{2}$$

$$y''' = 120x^{3} + 120x^{2} - 72x$$

$$y''' = 360x^{2} + 120x^{2} - 72x$$

$$y''' = 720x^{2} + 120x^{2} + 120x^{2} - 72x$$

$$y''' = 720x^{2} + 120x^{2} + 120x^{2}$$

Find
$$y', y'', y''', y^{(4)}, y^{(5)}, ..., y^{(n)}$$
 $y = 5x^3 - 3x^2 + 2$
 $y = x^6 + 2x^5 - 3x^4 + 2x - 5$

If $f(x)$ is a polynomial of degree n , then

 $f^{(n+1)}(x) = 0$.

If $f(x) = x^n$, then

 $f^{(n)}(x) = n! = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1$
 $f(x) = 3x^9 - 15x^4 + 23x^{16} - 201x^3 - 3$
 $f^{(17)} = 0$