topology - basis April 11, 2014

Definition. A *topology* on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \emptyset and X are in \mathcal{T} .
- (2) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (3) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a *topological space*.

If X is a topological space with topology \mathcal{T} , we say that a subset U of X is an **open set** of X if U belongs to the collection \mathcal{T} . Using this terminology, one can say that a topological space is a set X together with a collection of subsets of X, called **open sets**, such that \emptyset and X are both open, and such that arbitrary unions and finite intersections of open sets are open.

Definition. If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

topology - basis April 11, 2014

$$X = \{a,b,c\}$$
 $T = \{\emptyset,X,\{a\},\{b\},\{a,b\}\}\}$
 $B = \{\{a\}\}\}$
 $B = \{\{a\},\{b\}\}\}$
 $b \in X$

6. Show that the topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.

(Show that not there is a subset of the other)

topology on \mathbb{R}_{ℓ} = "the lower limit topology" \mathbb{R}_{ℓ} = "the lower limit topology" \mathbb{R}_{ℓ} = "the \mathbb{R}_{ℓ} a = x < b }

topology on \mathbb{R}_{k} = "the K-Topology" \mathbb{R}_{ℓ} = "the lower limit topology" \mathbb{R}_{ℓ} = "the

topology - basis April 11, 2014

7. Consider the following topologies on R: $7_1 = \text{the standard topology.} (a,b)$ $7_2 = \text{the topology of } R.$ (a,b) + (a,b) - K $T_3 = \text{the finite complement topology.} (a,b) = \text{the topology of } R.$ $T_3 = \text{the inite complement topology.} (a,b) = \text{this finite or all at } X_3^3$ $T_3 = \text{the topology having all sets } (-\infty, a) = |x| | x < a| \text{ as basis.}$ Determine, for each of these topologies, which of the others it contains.

The topology of R.

The topo

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates the standard topology on \mathbb{R} .

(b) Show that the collection

$$\mathcal{C} = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C such that $x \in C \subset U$. Then C is a basis for the topology of X.