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Definition. A fopology on a set X is a collection T of subsets of X having the
following properties:

(1) £ and X are in 7.

(2) The union of the elements of any subcollection of 7 is in 7.

(3) The intersection of the elements of any finite subcollection of 7 is in 7.
A set X for which a topology 7 has been specified is called a topological space.

If X is a topological space with topology 7, we say that a subset U of X is an
open set of X if U belongs to the collection 7. Using this terminology, one can say
that a topological space is a set X together with a collection of subsets of X, called
open sets, such that @ and X are both open, and such that arbitrary unions and finite
intersections of open sets are open.

Definition. If X is a set, a basis for a topology on X is a collection B of subsets of X
(called basis elements) such that

(1) For each x € X, there is at least one basis element B containing x.

(2) If x belongs to the intersection of two basis elements B| and Bj, then there is a

basis element B3 containing x such that B3 C B N B,.

If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open in X (that is, to be an element of 77) if for
each x € U, there is a basis element B € B such that x € B and B C U. Note that
each basis element is itself an element of 7.
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6. Show that the topologies of Ry and R are not comparable.
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7. Consider the following topologies on R:

J1 = the standard topology, (a N ‘:)
T3 = the topology of Rk, Ca,|97 + (a'(g)_K

T3 = the finite complement topology, a\X-U is 'Fit\'*t Gk o xz
' of
T4 = the upper limit topology, having all sets (a, b} as basis,

75 = the topology having all sets (—o0, @) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.
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8. (a) Apply Lemma 13.2 to show that the countable collection

B = {(a, b) | a < b, @ and b rational}

is a basis that generates the standard topology on R.
(b) Show that the collection

C ={la,b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology
on R.

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such thatx € C C U. Then C is a basis for the topology of X .
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