topology - HW #4 Hints & Intro to closed spaces & limit points April 14, 2014

1. Let X be atopological space; let A be a subset of X. Suppose that foreachx € A
there is an open set U containing x such that U C A. Show that A is open in X.

Definition. If X is a set, a basis for a topology on X is a collection B of subsets of X
(called basis elements) such that

(1) For each x € X, there is at least one basis element B containing x.
(2) If x belongs to the intersection of two basis elements B| and B3, then there is a
basis element B3 containing x such that B3 C B; N Bs.
If B satisfies these two conditions, then we define the topology T generated by B as
follows: A subset U of X is said to be open in X (that is, to be an element of 7) if for

each x € U, there is a basis element B € B such that x € B and B ¢ U. Note that
each basis element is itself an element of 7.

3. Show that the collection 7; given in Example 4 of §12 is a topology on the set X.
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7. Consider the following topologies on R:

the standard topology, (a b)
‘.T the tol:fology of Rg, (o) b7 + (& Ig)
73 = the finite complement topology, X-WU is ‘FI m" < of M ok Xi

T4 = the upper limit topology, having al sets {(a, b] as basis,
T5 = the topology having all sets (—00, @) = {x | x < a} as basis.

Determine, for each of these topologies, which of the others it contains.
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8. (a) Apply Lemma 13.2 to show that the countable collection

B = {(a,b) | a < b, a and b rational}

is a basis that generates the standard topology on R.
(b) Show that the collection

C = {[a,b) | a < b, a and b rational}

is a basis that generates a topology different from the lower limit topology
on R.

Lemma 13.2. Let X be a topological space. Supp that C is a collection of open
sets of X such that for each open set U of X and each x in U, there is an element C
of C such that x € C C U. Then C is a basis for the topology of X.
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Closed Sets, Limit Points, and Continuity

Recall: A 15 openin Xif (,LEKI; .

Def Let X be a topological space. A € X isaclosed set if X — A ia open.
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Thm 17.1 Let X be a topological space. The following hold:
1) @, X are closed

2) arbitrary intersections of closed sets are closed, i.e. if 4; are closed, N; 4; is closed.

3) finite unions of closed sets are dosed
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Def Let X be a topalogical space and let A © X. The dosure of A, denoted by 4, is the intersection of all closed sets

containing A.

Thm 17.5 Let A © Xand let B be a basis for X. Then x € A if and only if every open set IJ containing x intersects A

and x € A if and only if every basis element B containing x intersects A
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Def U is a neighborhood of x if U isopenandx € U

Def Let X be a topological space and let A © X. x € X is said to be a limit point of 4 if every neighborhood of x
intersects A in a point other than x.
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Thm 17.6 Let A € X and let A’ be the set of all limit points of A. Then4 = AU 4’

Cor 17.7 Ais closed if and only if A contains all its limit points.
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