1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

Definition. If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

3. Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X. Is the collection

a topology on X? No. Find a counter-example where on of the criteria fails.

To = co countable topology

= EU X-U is countable or all of X

Need to show

$$\emptyset \in \mathcal{T}_{c}$$
 $X \in \mathcal{T}_{c}$

Uha $\in \mathcal{T}_{c}$ for the \mathcal{T}_{c}

Use de Morgan's

Laws

Laws

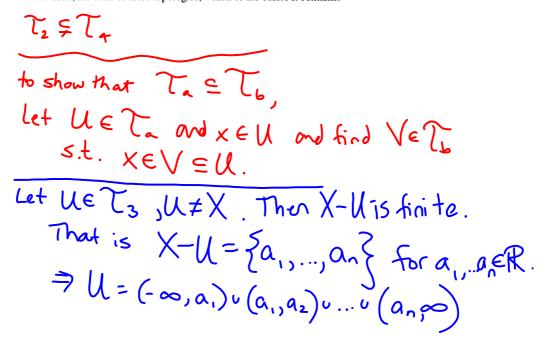
(X-Ua)

7. Consider the following topologies on \mathbb{R} :

 \mathcal{T}_1 = the standard topology, (a,b) \mathcal{T}_2 = the topology of \mathbb{R}_K , (a,b) + (a,b) - K \mathcal{T}_3 = the finite complement topology, \mathcal{T}_4 = the upper limit topology, having all sets (a,b] as basis,

Determine, for each of these topologies, which of the others it contains.

 \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.



8. (a) Apply Lemma 13.2 to show that the countable collection

 $\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$

is a basis that generates the standard topology on \mathbb{R} .

(b) Show that the collection

 $C = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$

is a basis that generates a topology different from the lower limit topology on $\ensuremath{\mathbb{R}}.$

Lemma 13.2. Let X be a topological space. Suppose that $\mathbb C$ is a collection of open sets of X such that for each open set U of X and each X in U, there is an element C of $\mathbb C$ such that $X \in C \subset U$. Then $\mathbb C$ is a basis for the topology of X.

(a) Given (a,b) (an equiset in the standard and $x \in (a,b)$ topology in \mathbb{R}) we need $B \in \mathbb{R}$ s.t. $x \in B \subseteq (a,b)$.

(b) I. Show that the collection
is a basis for a topology on R
(using definition)

2. to show it's different from
lower limit top-ney, try to rappae
the 2

The Start of the consisting of the Start of

Closed Sets, Limit Points, and Continuity

Recall: U is open in X if UETx

<u>Def</u> Let X be a topological space. $A \subset X$ is a <u>closed set</u> if X - A ia open.

Examples:

- 2 [a,b] in \mathbb{R} (ω /standard topology) \mathbb{R} -[a,b] = $(-\infty,a)$ $\upsilon(b,\infty)$ Since $(-\infty,a)$ $\upsilon(b,\infty)$ both open, $(-\infty,a)$ $\upsilon(b,\infty)$ open $\Rightarrow [a,b]$ is closed

Why is (b, 00) open?

(b, b+n) arbitrary union of open intervals

- 3. $(-\infty, a]$ or $[a, \infty)$? $\mathbb{R} (-\infty, a] = (a, \infty)$ open $\Rightarrow (-\infty, a]$ is closed
- 4. co-finite topology on X

 \[
 \{\text{U} \ X U \ is finite of all of X}\}
 \]
 \[
 A = \{\text{a}\} \cup X \{\text{a}\}
 \]
 \[
 X A = X \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{A} \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{A} \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{A} \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{A} \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{A} \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{A} \{\text{a}\} = \{\text{a}\}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{Thinte}
 \]
 \[
 \text{Thinte}
 \]

Thm 17.1

Let X be a topological space. The following hold:

- 1) Ø, X are closed
- 2) arbitrary intersections of closed sets are closed, i.e. if A_i are closed, $\bigcap_i A_i$ is closed.
- 3) finite unions of closed sets are closed

Proof: Ø, X are closed as X-Ø=X and X-X=Ø are open

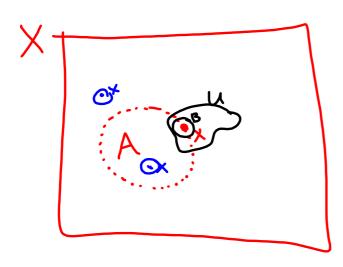
2. MAi is closed if X-MAi is open X-MAi = (X-Ai)

Ai closed Vi, X-Ai open arbitrary union of open sets is open

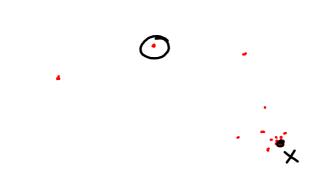
3. PA; is closed if X-PA; is open X-PA; is open X-PA; is open Ai closed X-Ai open finite intersection of opensets is open

<u>Def</u> Let X be a topological space and let $A \subseteq X$. The <u>dosure</u> of A, denoted by \overline{A} , is the intersection of all closed sets containing A.

Thm 17.5 Let $A \subset X$ and let $\mathfrak B$ be a basis for X. Then $x \in \bar A$ if and only if every open set U containing x intersects A and $x \in \bar A$ if and only if every basis element B containing x intersects A



- **<u>Def</u>** U is a <u>neighborhood</u> of x if U is open and $x \in U$
- <u>Def</u> Let X be a topological space and let $A \subseteq X$. $x \in X$ is said to be a <u>limit point</u> of A if every neighborhood of x intersects A in a point other than x.



- **Thm 17.6** Let $A \subset X$ and let A' be the set of all limit points of A. Then $\bar{A} = A \cup A'$.

(a,b) limit points are
$$a \land b$$

 $(a,b) = [a,b]$