Definition. A *topology* on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \emptyset and X are in \mathcal{T} .
- (2) The union of the elements of any subcollection of \mathcal{T} is in \mathcal{T} .
- (3) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

A set X for which a topology \mathcal{T} has been specified is called a *topological space*.

If X is a topological space with topology \mathcal{T} , we say that a subset U of X is an **open set** of X if U belongs to the collection \mathcal{T} . Using this terminology, one can say that a topological space is a set X together with a collection of subsets of X, called **open sets**, such that \emptyset and X are both open, and such that arbitrary unions and finite intersections of open sets are open.

Definition. If X is a set, a **basis** for a topology on X is a collection \mathcal{B} of subsets of X (called **basis elements**) such that

- (1) For each $x \in X$, there is at least one basis element B containing x.
- (2) If x belongs to the intersection of two basis elements B_1 and B_2 , then there is a basis element B_3 containing x such that $B_3 \subset B_1 \cap B_2$.

If \mathcal{B} satisfies these two conditions, then we define the **topology** \mathcal{T} **generated by** \mathcal{B} as follows: A subset U of X is said to be open in X (that is, to be an element of \mathcal{T}) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that each basis element is itself an element of \mathcal{T} .

Lemma 13.2. Let X be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C of C such that $x \in C \subset U$. Then C is a basis for the topology of X.

- 1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.
- 3. Show that the collection \mathcal{T}_c given in Example 4 of §12 is a topology on the set X. Is the collection

$$\mathcal{T}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

7. Consider the following topologies on \mathbb{R} :

 \mathcal{T}_1 = the standard topology,

 \mathcal{T}_2 = the topology of \mathbb{R}_K ,

 \mathcal{T}_3 = the finite complement topology,

 \mathcal{T}_4 = the upper limit topology, having all sets (a, b) as basis,

 \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates the standard topology on \mathbb{R} .

(b) Show that the collection

$$C = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .

- 1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X.

from defin of a basis: follows: A subset U of X is said to be open in X (that is, to be an element of T) if for each $x \in U$, there is a basis element $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. Note that

sketch of plan:

A is open in X if $A \in \mathbb{T}_{\times}$ Every topology has a basis B

According to this,

A is open in X if for each XEA, 3 BEB S.t XEB and BEA

Given: X, a topological space w/ topology T

A=W L S.t. Xell and USA

Proof: Let XEA. By assumption, I LET s.t. xeu an UsA.

Since Uisoperin X, 3 BEB st...

 $\phi: X - \phi = X \Rightarrow \phi \in \mathcal{L}_{\infty}$

 $X: X-X=\emptyset \Rightarrow X \in \mathcal{T}_{\infty}$

 $\hat{Q}_{i}U_{i}:X-\hat{Q}_{i}U_{i}=\hat{Q}_{i}(X-U_{i})$

 $U_i \in \mathcal{T}_{\infty} \ \forall i$)

1. If $U_i = \emptyset$ for any i, $X - U_i = X \subseteq \bigcup_{i=1}^{n} (X - U_i)$ 2. If $U_i = X$ for all i, $X - U_i = \emptyset$

3. $U_i \neq \emptyset$ for all i and $U_i \neq X$ for at least one i

X-U; is infite for at least one i

 $X-U_i \subseteq \bigcup (X-U_i)$ is intivite

⇒ Î Ui € To

 $\bigcup u_{\alpha}: X - \bigcup u_{\alpha} = \bigcap (X - u_{\alpha})$

1. If Ua=X for at least one x, X-Ua= Ø 2. If Ua= Ø for all < X-Ua=X

3. Ux + X For any < and Ux + B for at least > X-Ux is infinite

 $(x-u_x) \in (x-u_x)$

inconclusive

Construct 2
Subsets of Z

U, & U₂

s.t.

X-U, & X-U₂

are infinite (or exply but that the dust X)

X-(U, UU₂) is
finite.

(X-U₁) or (X-U₂)

- 7. Consider the following topologies on \mathbb{R} :
 - T_1 = the standard topology,
 - \mathcal{T}_2 = the topology of \mathbb{R}_K ,
 - \mathcal{T}_3 = the finite complement topology,
 - \mathcal{T}_4 = the upper limit topology, having all sets (a, b] as basis,
 - \mathcal{T}_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

Let $(a,b] \in T_4$ and $x \in (a,b]$.

We need some $(-\infty,c) \in T_8$ s.t. $x \in (-\infty,c)$ and $(-\infty,c) \leq (0,b]$.

Let $(0,1] \in T_4$ and $1 \in (0,1]$. $X \in (-\infty,a) \in T_8$ s.t. $|E(-\infty,a) \subseteq (0,1]$. $X \in T_4$?

Let $(-\infty,a) \in T_8$ and $X \in (-\infty,a)$.

We need some $(b,c] \in T_4$ s.t. $X \in (b,c] \subseteq (-\infty,a)$. $X \in (x-1,x] \subseteq (-\infty,a)$. $X \in (x-1,x] \subseteq (-\infty,a)$.

7. Consider the following topologies on \mathbb{R} :

$$\mathcal{T}_1$$
 = the standard topology,
 \mathbf{T}_2 = the topology of \mathbf{R}_K . (a,b) \cup (a,b) $-\{1, n \in \mathbb{Z}_+\}$
 \mathcal{T}_3 = the finite complement topology. \mathbf{T}_4 = the upper limit topology, having all sets (a,b) as basis,
 \mathcal{T}_5 = the topology having all sets $(-\infty,a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains

$$T_2 \not= T_3$$
?
Casel: Let $(a,b) \in T_2$ $ad \times e(a,b)$

$$T_3 = T_2$$
? Let $U \in T_3$ and $X \in U$.
 $X \in (-\infty, a)$ or $X \in (b, c)$ or $X \in (d, \infty)$
 $Y \in (x-1, \frac{a-x}{2})$ or $(\frac{x-b}{2}, \frac{c-x}{2})$ or $(\frac{x-d}{2}, x+1)$

$$\Rightarrow T_3 \not\subseteq T_2$$

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates the standard topology on \mathbb{R} .

(b) Show that the collection

$$\mathcal{C} = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$$

is a basis that generates a topology different from the lower limit topology

(a) Let XER

need B∈B st. X∈B

Gler B, & B, EB, XEB, nB2, we need B3C B, nB2 S.t. XEB3.

