Closed Sets, Limit Points, and Continuity

<u>Def</u> Let *X* be a topological space. $A \subset X$ is a **<u>closed set</u>** if X - A ia open.

- **Thm 17.1**Let X be a topological space. The following hold:

 1) \emptyset , X are closed

 2) arbitrary intersections of closed sets are closed, i.e. if A_i are closed, $\bigcap_i A_i$ is closed.

 3) finite unions of closed sets are closed
- Thm 17.2Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the intersection of a closed set
of X with Y.
- **Def** Let *X* be a topological space and let $A \subset X$. The **closure** of *A*, denoted by \overline{A} , is the intersection of all closed sets containing *A*.
- **Thm 17.5** Let $A \subset X$ and let \mathfrak{B} be a basis for X. Then $x \in \overline{A}$ if and only if every open set U containing x intersects A and $x \in \overline{A}$ if and only if every basis element B containing x intersects A
- **<u>Def</u>** *U* is a <u>**neighborhood**</u> of *x* if *U* is open and $x \in U$
- **Def** Let *X* be a topological space and let $A \subset X$. $x \in X$ is said to be a <u>limit point</u> of *A* if every neighborhood of *x* intersects *A* in a point other than *x*.
- **Thm 17.6** Let $A \subset X$ and let A' be the set of all limit points of A. Then $\overline{A} = A \cup A'$.
- **<u>Cor 17.7</u>** *A* is closed if and only if *A* contains all its limit points.
- **Def** A topological space is **Hausdorff** if for each pair of distinct points x and y, there exist disjoint neighborhoods of x and y.
- **Thm 17.8** Every finite set in a Hausdorff space is closed.
- **Thm 17.9** Let X be a Hausdorff space and let $A \subset X$. Then x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A.
- **<u>Def</u>** Let X and Y be topological spaces and $f: X \to Y$ be a function. f is said to be <u>continuous</u> if for every open set V in Y, $f^{-1}(V)$ is open in X. $f^{-1}(V) = \{x \in X | f(x) \in V\}$

Thm 18.1 Let X and Y be topological spaces and $f: X \to Y$ be a function. The following are equivalent: 1) f is continuous 2) $f^{-1}(B)$ is closed for every closed set $B \subset Y$ 3) for each $x \in X$ and each neighborhood V of f(x), there exists a neighborhood U of x such that $f(U) \subset V$.

<u>Def</u> Let $f: X \to Y$ be a bijection. If both f and f^{-1} are continuous, then f is called a <u>homeomorphism</u>.